相关习题
 0  257728  257736  257742  257746  257752  257754  257758  257764  257766  257772  257778  257782  257784  257788  257794  257796  257802  257806  257808  257812  257814  257818  257820  257822  257823  257824  257826  257827  257828  257830  257832  257836  257838  257842  257844  257848  257854  257856  257862  257866  257868  257872  257878  257884  257886  257892  257896  257898  257904  257908  257914  257922  366461 

科目: 来源: 题型:

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)试探究线段CD、DE、EO之间的等量关系,并加以证明;
(2)若tanC=
5
2
,DE=2,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

如图,在△ABC中,∠C=90°,BC=5米,AB=10米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.
(1)当t为何值时,△AMN的面积为6米?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

查看答案和解析>>

科目: 来源: 题型:

先化简再求值:(
3x
x-1
-
x
x+1
)•
x2-1
x
,然后请你取一个合适的x值代入求值.

查看答案和解析>>

科目: 来源: 题型:

已知|2x-24|+(3x-y-k)2=0,若k>0,求y的取值范围.

查看答案和解析>>

科目: 来源: 题型:

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:
(1)求a、b、c的值;
(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的函数关系式,并求出点P与Q相遇时x的值.

查看答案和解析>>

科目: 来源: 题型:

观察发现】如图1,△ABC和△CDE都是等边三角形,且点B、C、E在一条直线上,连接BD和AE,BD、AE相交于点P,猜想线段BD与AE的数量关系,以及BD与AE相交构成的锐角的度数.(只要求写出结论,不必说出理由)
深入探究】如图2,将△CDE绕点C逆时针旋转一定的角度,其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请说明理由
拓展应用】如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,求边CD的长度.

查看答案和解析>>

科目: 来源: 题型:

如图,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:
∵AB∥DC(已知)
∴∠1=
 
 

∵AE平分∠BAD(已知)
∴∠1=∠2 (角平分线的定义)
 
=
 
 

∵∠CFE=∠E(已知)
∴∠2=
 
(等量代换)
∴AD∥BC (
 

查看答案和解析>>

科目: 来源: 题型:

(1)解方程:x2+4x-3=0;  
(2)解不等式组
1-2(x-1)≤5
3x-2
2
<x+
1
2
,并把解集在数轴上表示出来.

查看答案和解析>>

科目: 来源: 题型:

如图,为测得某一湖泊的宽度,在A处的正上方G处有一架飞行的飞机,此时正好测得湖泊东岸的点C处的俯角为30°,湖泊西岸的点B处的俯角为60°,此时飞机离地面的高度为900米,则湖泊的宽度是多少米?

查看答案和解析>>

同步练习册答案