相关习题
 0  262527  262535  262541  262545  262551  262553  262557  262563  262565  262571  262577  262581  262583  262587  262593  262595  262601  262605  262607  262611  262613  262617  262619  262621  262622  262623  262625  262626  262627  262629  262631  262635  262637  262641  262643  262647  262653  262655  262661  262665  262667  262671  262677  262683  262685  262691  262695  262697  262703  262707  262713  262721  366461 

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分8分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;

(2)计算乙队的平均成绩和方差;

(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分8分)某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植3株时,平均每株可盈利4元;若每盆多种植1株,则平均每株盈利要减少0.5元.为使每盆的盈利达到15元,则每盆应种植花卉多少株?

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分8分)如图,已知二次函数的图象交轴于两点.

(1)求线段AD的长;

(2)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分10分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=

(1)求抛物线的解析式;

(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分10分)有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.

⑴ 在如图所示的直角坐标系中,求出该抛物线的解析式;

⑵ 设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):

温度/℃

……

-4

-2

0

2

4

4.5

……

植物每天高度增长量/mm

……

41

49

49

41

25

19.75

……

由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.

(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;

(2)温度为多少时,这种植物每天高度的增长量最大?

(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分10分)沿海开发公司准备投资开发A、B两种新产品,通过市场调研发现:

(1)若单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;

(2)若单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.

(3)根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值如下表所示:

(1)填空:yA= ;yB= ;

(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;

(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分12分)问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?

初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.

⑴当C、D在线段AB的同侧时,

如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是 ;

如图②,若点D在⊙O内,此时有∠ACB ∠ADB;

如图③,若点D在⊙O外,此时有∠ACB ∠ADB.(填“=”、“>”或“<”);

由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件: .

类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.

如图④,此时有 ,

如图⑤,此时有 ,

如图⑥,此时有 .

由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:

拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?

已知:如图,AB是⊙O的直径,点C在⊙O上.

求作:CN⊥AB.

作法:①连接CA, CB;

②在上任取异于B、C的一点D,连接DA,DB;

③DA与CB相交于E点,延长AC、BD,交于F点;

④连接F、E并延长,交直径AB于M;

⑤连接D、M并延长,交⊙O于N.连接CN. 则CN⊥AB.

请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)

查看答案和解析>>

科目: 来源:2014-2015学年江苏省东台市九年级上学期第二次月考数学试卷(解析版) 题型:解答题

(本题满分12分)如图,已知抛物线经过点B(-1,0)、C(3,0),交y轴于点A,

(1)求此抛物线的解析式;

(2)抛物线第一象限上有一动点M,过点M作MN⊥轴,垂足为N,请求出的最大值,及此时点M坐标;

(3)抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

查看答案和解析>>

科目: 来源:2014-2015学年江苏省射阳县九年级上学期期末考试数学试卷(解析版) 题型:选择题

的值等于( )

A. B.一2 C.? 2 D.

查看答案和解析>>

同步练习册答案