科目: 来源: 题型:
如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,
OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.
(1)若抛物线
经过A、B两点,求该抛物线的解析式:______________;
(2)若点M是直线AB上方抛物线上的一个动点,
作MN⊥x轴于点N.是否存在点M,使△AMN
与△ACD相似?若存在,求出点M的坐标;
若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
抛物线
与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.
(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;
(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系xOy中,已知直线l1:y=
x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.
(1)填空:点B的坐标为________,点C的坐标为_________.
(2)若正方形以每秒
个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.
(1)当t=_____s时,点P与点Q重合;
(2)当t=_____s时,点D在QF上;
(3)当点P在Q,B两点之间(不包括Q,B两点)时,
求S与t之间的函数关系式.
查看答案和解析>>
科目: 来源: 题型:
如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).
(1)t为何值时,点Q' 恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围.
(3)S能否为
?若能,求出此时t的值;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,等腰梯形ABCD中,AB∥CD,AB=
, CD=
,高CE=
,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为
,被直线RQ扫过的面积为
,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=____________;AC=_____________;
(2)若
,求x.
查看答案和解析>>
科目: 来源: 题型:
1. 已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点
与点
重合,点N到达点
时运动终止),过点M、N分别作
边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为
秒.
(1)线段MN在运动的过程中,
为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间
变化的函数关系式,并写出自变量t的取值范围.
1题图 2题图
查看答案和解析>>
科目: 来源: 题型:
如图,抛物线y=
x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
![]()
![]()
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com