科目: 来源: 题型:
某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案由哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?
(成本=材料费+加工费)
查看答案和解析>>
科目: 来源: 题型:
在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)
(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予
证明,如果不成立,请说明理由;
(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.
查看答案和解析>>
科目: 来源: 题型:
已知A、B两市相距260千米.甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计).乙车到达M地后又经过20分钟修好甲车后原路返回,同时甲车以原速1.5倍的速度前往B市.如图是两车距A市的路程y (千米)与甲车行驶时间x (小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是_______千米/小时,乙车的速度是_______千米/小时,点C的坐标为_____________.
(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;
(3)求甲车到达B市时乙车已返回A市多长时间.
查看答案和解析>>
科目: 来源: 题型:
在大课间活动中, 同学们积极参加体育锻炼.小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查.下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)小龙共抽取________名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是______度;
(4)若全校共有2130名学生,请你估算“其他”部分的学生人数.
查看答案和解析>>
科目: 来源: 题型:
如图,已知抛物线的顶点为A(1,4)、抛物线
与y轴交于点B(0,3),与x轴交于C、D两点.
点P是x轴上的一个动点.
(1)求此抛物线的解析式.
(2)当PA+PB的值最小时,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
如图所示,在四边形ABCD中,
(1)画出四边形A1B1C1D1,使四边形
A1B1C1D1与四边形ABCD关于直线MN成轴对称;
(2)画出四边形A2B2C2D2.,使四边形
A2B2C2D2与四边形ABCD关于点O中心对称.
(3)四边形A1B1C1D1与四边形A2B2C2D2是否
对称,.若对称请在图中画出对称轴或对称中心.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系xoy中,有一个等腰直
角三角形AOB,∠OAB=90°,直角边AO在x
轴上,且AO=1.将Rt△AOB绕原点O顺时针旋
转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到
等腰直角三角形A2OB2,且A2O=2A1O,……,
依此规律,得到等腰直角三角形A2014OB2014,
则点A2014的坐标为________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com