相关习题
 0  265866  265874  265880  265884  265890  265892  265896  265902  265904  265910  265916  265920  265922  265926  265932  265934  265940  265944  265946  265950  265952  265956  265958  265960  265961  265962  265964  265965  265966  265968  265970  265974  265976  265980  265982  265986  265992  265994  266000  266004  266006  266010  266016  266022  266024  266030  266034  266036  266042  266046  266052  266060  366461 

科目: 来源: 题型:


某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是(     )

  A.4米             B.3米               C.2米                D.1米

查看答案和解析>>

科目: 来源: 题型:


某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:

价格x(元/个)…30405060…销售量y(万个)…5432…同时,销售过程中的其他开支(不含进价)总计40万元.

(1)观察并分析表中的y与x之间的对应关系,用学过的一次函数、反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式;

(2)求得该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?

(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目: 来源: 题型:


科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).

温度x/℃…-4-20244.5…植物每天高度

增长量y/mm…414949412519.75…由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.

(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;

(2)温度为多少时,这种植物每天高度增长最大?

(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250 mm,那么实验室的温度x应该在哪个范围内选择?直接写出结果.

查看答案和解析>>

科目: 来源: 题型:


某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

查看答案和解析>>

科目: 来源: 题型:


小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.

(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);

(2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

科目: 来源: 题型:


如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形的面积为S米2.

(1)求S与x的函数关系式;

(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号).

查看答案和解析>>

科目: 来源: 题型:


某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:


某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种10棵橘子树,橘子总个数最多.

查看答案和解析>>

科目: 来源: 题型:


某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.

(1)当售价定为每件30元时,一个月可获利多少元?

(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:


如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.

(1)求抛物线的解析式;

(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系

h=-(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

同步练习册答案