科目: 来源: 题型:
如图,抛物线y=-
x 2+3与x轴交于点A、点B,与直线y=-
x +b相交于点B、点C,直线y=-
x +b与y轴交于点E.
(1)求直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:![]()
![]()
(1)如图①,当点D是BC边上的中点时,S△A
BD:S△ABC= ;当点D是BC边上任意一点时,S△ABD:S△ABC= (用图中已有线段表示).
探索研究:
(2)如
图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO
、CO,试猜想S△BOC与S△ABC之比应
该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A、
D重合),连结BO并延长交AC于点F,连结C
O并延长交AB于点E,试猜想
+
+
的值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为
.
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E=
,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:
| 农产品种类 | A | B | C |
| 每辆汽车的装载量 | 4 | 5 | 6 |
(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?
(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.
查看答案和解析>>
科目: 来源: 题型:
如图,已知反比例函数y1 =
(k1 >0)与一次函数y2 =k2 x2+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?
查看答案和解析>>
科目: 来源: 题型:
为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目: 来源: 题型:
如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A’B’C’.在坐标系中画出△A’B’C’,并写出△A’B’C’各顶点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com