相关习题
 0  266556  266564  266570  266574  266580  266582  266586  266592  266594  266600  266606  266610  266612  266616  266622  266624  266630  266634  266636  266640  266642  266646  266648  266650  266651  266652  266654  266655  266656  266658  266660  266664  266666  266670  266672  266676  266682  266684  266690  266694  266696  266700  266706  266712  266714  266720  266724  266726  266732  266736  266742  266750  366461 

科目: 来源: 题型:


下列图形中,是中心对称图形的为(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目: 来源: 题型:


如图所示的几何体的主视图是(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目: 来源: 题型:


计算2﹣3的结果是(  )

 

A.

﹣5

B.

﹣1

C.

1

D.

5

查看答案和解析>>

科目: 来源: 题型:


如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

(1)求抛物线的解析式;

(2)当0<t≤8时,求△APC面积的最大值;

(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目: 来源: 题型:


“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).

(1)①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;

②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.

(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;

(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.

查看答案和解析>>

科目: 来源: 题型:


如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.

(1)求证:直线DF与⊙O相切;

(2)若AE=7,BC=6,求AC的长.

查看答案和解析>>

科目: 来源: 题型:


某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:

阅读本数n(本)

1

2

3

4

5

6

7

8

9

人数(名)

1

2

6

7

12

x

7

y

1

请根据以上信息回答下列问题:

(1)分别求出统计表中的x、y的值;

(2)估计该校九年级400名学生中为“优秀”档次的人数;

(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.

查看答案和解析>>

科目: 来源: 题型:


为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.

(1)求A、B两种型号家用净水器各购进了多少台;

(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)

查看答案和解析>>

科目: 来源: 题型:


正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是 

查看答案和解析>>

同步练习册答案