相关习题
 0  267360  267368  267374  267378  267384  267386  267390  267396  267398  267404  267410  267414  267416  267420  267426  267428  267434  267438  267440  267444  267446  267450  267452  267454  267455  267456  267458  267459  267460  267462  267464  267468  267470  267474  267476  267480  267486  267488  267494  267498  267500  267504  267510  267516  267518  267524  267528  267530  267536  267540  267546  267554  366461 

科目: 来源: 题型:


袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率(  )

A    B.     C.    D.

查看答案和解析>>

科目: 来源: 题型:


如图1,直线l1和直线l2被直线l所截,已知

l1l2,∠1=70°,则∠2=(  )

A.110°     B.90°     C.70°     D.50°

查看答案和解析>>

科目: 来源: 题型:


下列说法正确的是(  )

A.            B.0的倒数是0

C.4的平方根是2       D.-3的相反数是3

查看答案和解析>>

科目: 来源: 题型:


如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.

(1)求该抛物线的解析式;

(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.

(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.

(1)当t=5时,请直接写出点D、点P的坐标;

(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;

(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.

查看答案和解析>>

科目: 来源: 题型:


 如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.

(1)求证:DE是⊙O的切线;

(2)若OF:OB=1:3,⊙O的半径R=3,求的值.

查看答案和解析>>

科目: 来源: 题型:


如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.

(1)快艇从港口B到小岛C需要多长时间?

(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.

查看答案和解析>>

科目: 来源: 题型:


如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.

(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;

(2)求△COD的面积;

(3)直接写出y1>y2时自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:


某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.

(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?

(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.

查看答案和解析>>

科目: 来源: 题型:


“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).

(1)四个年级被调查人数的中位数是多少?

(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?

(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

同步练习册答案