相关习题
 0  267880  267888  267894  267898  267904  267906  267910  267916  267918  267924  267930  267934  267936  267940  267946  267948  267954  267958  267960  267964  267966  267970  267972  267974  267975  267976  267978  267979  267980  267982  267984  267988  267990  267994  267996  268000  268006  268008  268014  268018  268020  268024  268030  268036  268038  268044  268048  268050  268056  268060  268066  268074  366461 

科目: 来源: 题型:


如图,已知抛物线y1=﹣2x2+2,直线y2=﹣2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较大值记为M;若y1=y2,记M=y1=y2。例如:当x=﹣1时,y1=0,y2=4,y1<y2,此时M=4。下列判断:

①当x<0时,y1>y2

②当x>0时,x值越大,M值越小;

③当x≥0时,使得M大于2的x值不存在;

④使得M=1的x值是

其中正确的有【    】

  A.1个  B.2个  C.3个  D.4个

查看答案和解析>>

科目: 来源: 题型:


 二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是【    】

  A.   B.   C.   D.

查看答案和解析>>

科目: 来源: 题型:


 一次函数y=ax+b(a>0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是(  )

A.a>b>0    B.a>k>0    C.b=2a+k    D.a=b+k

查看答案和解析>>

科目: 来源: 题型:


如图,已知二次函(m>0)的图象与x轴交于A、B两点.

(1)写出A、B两点的坐标(坐标用m表示);

(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;

(3)设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目: 来源: 题型:


如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过点B。

(1)若a=-l,且抛物线与矩形有且只有三个交点B、D、E,求△ BDE的面积S的最大值;

(2)若抛物线与矩形有且只有三个交点B、M、N,线段MN的垂直平分线l过点C,交线段OA于点F。当AF=1时,求抛物线的解析式。

查看答案和解析>>

科目: 来源: 题型:


如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.

(1)求点的坐标;

(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:


如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0, 3)。

(1)求抛物线的解析式;

(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;

(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源: 题型:


如图,抛物线的顶点为D(﹣1,4),与轴交于点C(0,3),与轴交于A,B两点(点A在点B的左侧)。

(1)求抛物线的解析式;

(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标。

查看答案和解析>>

科目: 来源: 题型:


 如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为斜边的等腰直角三角形ABC的顶点C的坐标为         .

查看答案和解析>>

科目: 来源: 题型:


某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元)。当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。在外地销售的投资收益为:每投入万元,可获利润Q=(万元)。

(1)若不进行开发,求5年所获利润的最大值是多少?

(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?

(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

同步练习册答案