相关习题
 0  267884  267892  267898  267902  267908  267910  267914  267920  267922  267928  267934  267938  267940  267944  267950  267952  267958  267962  267964  267968  267970  267974  267976  267978  267979  267980  267982  267983  267984  267986  267988  267992  267994  267998  268000  268004  268010  268012  268018  268022  268024  268028  268034  268040  268042  268048  268052  268054  268060  268064  268070  268078  366461 

科目: 来源: 题型:


【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.

∵S=S△OBC+SOAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r

(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;

(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.

查看答案和解析>>

科目: 来源: 题型:


在Rt△ABC中,∠A=90°,∠B=30°, AC=1,点O在BC上,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径为         ;∠MND的度数为         

查看答案和解析>>

科目: 来源: 题型:


如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,弦AB的长为9.6cm,则两圆的连心线O1O2的长为【    】

A.11cm       B.10cm       C.9cm       D.8cm

查看答案和解析>>

科目: 来源: 题型:


如图,在半径为2的扇形OAB中,∠AOB=90°,点C是弧AB上的—个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E,则DE的长度(    )

A.1    B.2    C.    D.

查看答案和解析>>

科目: 来源: 题型:


类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,

CG和EH的数量关系是________,

的值是________.

(2)类比延伸:

如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.

(3)拓展迁移:

如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).

查看答案和解析>>

科目: 来源: 题型:


如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=1,AB=,在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°,当点E是AB的中点时,线段DF的长度是     

 

查看答案和解析>>

科目: 来源: 题型:


如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,则五边形ABCDE的面积等于     

查看答案和解析>>

科目: 来源: 题型:


如图,梯形ABCD中,AD∥BC,且BD⊥DC,AB=AD=DC=4,则=【    】

 A.        B.       C.        D.

查看答案和解析>>

科目: 来源: 题型:


矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

查看答案和解析>>

科目: 来源: 题型:


如图,在边长为3的正方形ABCD中,点M在边AD上,且AM=AD,延长MD至点E,使ME=MB,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为      

查看答案和解析>>

同步练习册答案