科目: 来源: 题型:
如图,在边长为4的正方形ABCD中,动点P,Q同时从A点出发,沿AB
→BC→CD向D点运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,当P运动到D点时,P、Q
两点同时停止运动。设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系式是 。
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当![]()
t为何值时,DQ=2AD?
(3)求线段QC所在直线与⊙P相切时t的值。
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.
![]()
![]()
(1)求线段AC的长度;
(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运
动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
查看答案和解析>>
科目: 来源: 题型:
如图,在平面坐标系中,直线y=﹣x+2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)
分别与直线AB相交于点E,点F,
当点P(a,b)运动时,矩形PMON的面积为定值2.当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为S1,△OEF的面积为S2。试探究:
是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由。
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,已知动点A在函数
(x>o)的图象上,AB⊥x轴于
点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC。直线DE分别交x轴,y轴于点P,Q。当QE:DP=4:9时,图中的阴影部分的面积等于 _。
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.
![]()
![]()
(1)求线段AC的长度;![]()
(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
查看答案和解析>>
科目: 来源: 题型:
如图,菱形ABCD的边长为2,∠A=
,动点P从点B出发,沿B-C-D的路线向点D运动。设△ABP的面积为y (B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的
图像大致为【 】
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
如图
,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则当y=
时,x的取
值是【 】
![]()
A. 1 B.
C. 1或
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.
问题思考:
如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.
(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.
(2)分别连接AD、DF、AF,
AF交DP于点A,当点P运动时,
在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.
![]()
![]()
问题拓展:
(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,
PQ的中点O所经过的路径的长。
(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、
EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.
![]()
![]()
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别
在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
![]()
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com