科目: 来源: 题型:
下列说法中正确的有( )
①过两点有且只有一条直线; ②连接两点的线段叫两点的距离;
③两点之间线段最短; ④若AC=BC,则点C是线段AB的中点.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目: 来源: 题型:
如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线.
(1)图中除了直角外,还有相等的角吗?请写出两对;
(2)如果∠DOA=60o,求∠COP与∠BOF的度数.
查看答案和解析>>
科目: 来源: 题型:
如图①,点O为直线AB上一点,过O点作射线OC,使∠BOC=120o,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1) 将图①中的三角板绕点O按逆时针方向旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.
(2) 将图①中的三角板绕点O按每秒6o的速度逆时针方向旋转一周,在旋转的过程中,直线ON恰好平分∠AOC,求旋转时间t的值.
(3) 将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,请说明理由。![]()
查看答案和解析>>
科目: 来源: 题型:
如图,点C是线段AB的中点.
(1)若点D在线段CB上,且DB=3.5cm,AD=6.5cm,求线段CD的长度;
(2)若将(1)中的点“D在线段CB上”改为“点D在直线CB上”,其它条件不变,请画出相应的示意图,并求出此时线段CD的长度;
(3)若线段AB=12 cm,点C在AB上,点D、E分别是AC和BC的中点.
①当点C恰是AB中点时,则DE= cm.
②当AC=4 cm,时,求DE的长;
③当点C在线段AB上运动时(点C与A、B重合除外),求DE的长.
查看答案和解析>>
科目: 来源: 题型:
如图,直线l上有A、B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.
(1)OA= cm,OB= cm;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为ts.当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP-OQ=4;
②当点P经过点O时,动点M从点0出发,以3c
m/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶
点放在点O处,一边OM
在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度数;
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;
(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,A、B、C是网格图中的三点.
(1)作直线AB、射线AC、线段BC.
(2)过B作AC的平行线BD.
(3)作出表示B到AC的距离的线段BE.
(4)判断BD与BE的位置关系是 .
(5)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).
查看答案和解析>>
科目: 来源: 题型:
如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积: cm3.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com