相关习题
 0  270404  270412  270418  270422  270428  270430  270434  270440  270442  270448  270454  270458  270460  270464  270470  270472  270478  270482  270484  270488  270490  270494  270496  270498  270499  270500  270502  270503  270504  270506  270508  270512  270514  270518  270520  270524  270530  270532  270538  270542  270544  270548  270554  270560  270562  270568  270572  270574  270580  270584  270590  270598  366461 

科目: 来源: 题型:


一元二次方程x2=2x的根是(  )

A.x=2   B.x=0   C.x1=0,x2=2     D.x1=0,x2=﹣2

查看答案和解析>>

科目: 来源: 题型:


如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C

(1)求抛物线的函数解析式.

(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.

(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


(1)问题发现

如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;

(2)类比引申

如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系      时,仍有EF=BE+DF;

(3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.

 

查看答案和解析>>

科目: 来源: 题型:


在圣诞节前夕,几位同学到某文具店调查一种进价为2元的圣诞贺卡的销售情况,每张定价3元,每天能卖出500张,每张售价每上涨0.1元,其每天销售量就减少10个.另外,物价局规定,售价不得超过商品进价的240%.据此,请你解答下面问题:

(1)要实现每天800元的利润,应如何定价?

(2)800元的利润是否最大?如何定价,才能获得最大利润?

 

查看答案和解析>>

科目: 来源: 题型:


如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.

(1)求k的值;

(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.

 

查看答案和解析>>

科目: 来源: 题型:


一架空客A320﹣200型客机2014年12月28日从印尼泗水飞往新加坡途中失事.我国政府马上派出舰船搜救,我海军一艘潜艇在海面下500米A点处测得仰角为30°正前方的海底有疑似黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有疑似黑匣子信号发出,求海底疑似黑匣子C点处距离海面的深度?(结果保留根号)

 

查看答案和解析>>

科目: 来源: 题型:


某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为      ,并把条形统计图补充完整;

(2)扇形统计图中m=      ,n=      ,表示“足球”的扇形的圆心角是      度;

(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

查看答案和解析>>

科目: 来源: 题型:


如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.

(1)BD与CD有什么数量关系,并说明理由;

(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.

(3)在(2)的条件下,△ABC满足条件      ,矩形AFBD是正方形.

 

查看答案和解析>>

科目: 来源: 题型:


先化简÷(a+2)+,再求值,a为整数且﹣2≤a≤2.

查看答案和解析>>

科目: 来源: 题型:


如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2,点E在x轴上,若△ACE为直角三角形,则E的坐标是      

 

查看答案和解析>>

同步练习册答案