科目: 来源: 题型:
已知二次函数y=ax2+bx+c的图象经过A(1,0),B(3,0),C(0,﹣3)
(1)求此二次函数的解析式以及顶点D的坐标;
(2)如图①,过此二次函数抛物线图象上一动点P(m,n)(0<m<3)作y轴平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,说明理由.
(3)如图②,过点A作y轴的平行线交直线BC于点F,连接DA、DB、四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点F重合时立即停止运动,求运动过程中四边形OAFC与四边形ADBF重叠部分面积S的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴交于点O、M.对称轴为直线x=2,以OM为直径作圆A,以OM的长为边长作菱形ABCD,且点B、C在第四象限,点C在抛物线对称轴上,点D在y轴负半轴上;
(1)求证:4a+b=0;
(2)若圆A与线段AB的交点为E,试判断直线DE与圆A的位置关系,并说明你的理由;
(3)若抛物线顶点P在菱形ABCD的内部且∠OPM为锐角时,求a的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣
的图象经过点C.
(1)求点C的坐标;
(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
某公司购进一种化工原料若干千克,价格为每千克30元,物价部门规定其销售单价每千克不高于60元且不低于30元,经市场调查发现,日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80,当x=50时,y=100.
(1)求y与x的函数解析式;
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数解析式;
(3)求当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
查看答案和解析>>
科目: 来源: 题型:
在一个布袋中装有2个红球和2个篮球,它们除颜色外其他都相同.
(1)搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;
(2)在这4个球中加入x个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出1个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在0.80,请推算加入的是哪种颜色的球以及x的值大约是多少?
查看答案和解析>>
科目: 来源: 题型:
如图,△AOB的三个顶点都在网格的格点上,每个小正方形的边长均为1个单位长度.
(1)在网格中画出△AOB绕点O逆时针旋转90°后的△A1OB1的图形;
(2)求旋转过程中边OB扫过的面积(结果保留π)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com