相关习题
 0  279166  279174  279180  279184  279190  279192  279196  279202  279204  279210  279216  279220  279222  279226  279232  279234  279240  279244  279246  279250  279252  279256  279258  279260  279261  279262  279264  279265  279266  279268  279270  279274  279276  279280  279282  279286  279292  279294  279300  279304  279306  279310  279316  279322  279324  279330  279334  279336  279342  279346  279352  279360  366461 

科目: 来源: 题型:解答题

7.如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=$\frac{3}{5}$.
(1)若点Q是线段BC上一点,且点Q的横坐标为m.
①求点Q的纵坐标;(用含m的代数式表示)
②若点P是⊙A上一动点,求PQ的最小值;
(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A随着点A的运动而移动.
①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;
②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图,二次函数y=ax2+c的图象与一次函数y=kx+c的图象在第一象限的交点为A,点A的横坐标为1,则关于x的不等式ax2-kx<0的解集为(  )
A.0<x<1B.-1<x<0C.x<0或x>1D.x<-1或x>0

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,AD=9,AB=12,BC=15.动点P从点B出发,沿BD向点D匀速运动;线段EF从DC出发,沿DA向点A匀速运动,且与BD交于点Q,连接PE、PF.若P、Q两点同时出发,速度均为1个单位∕秒,当P、Q两点相遇时,整个运动停止.设运动时间为t(s).
(1)当PE∥AB时,求t的值;
(2)设△PEF的面积为S,求S关于t的函数关系式;
(3)如图2,当△PEF的外接圆圆心O恰好在EF的中点时,求t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.
图1为点P在⊙O外的情形示意图.

(1)若点B(1,0),C(1,1),$D({0,\frac{1}{3}})$,则SB=0;SC=$\sqrt{2}$-1;SD=$\frac{2}{3}$;
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR,直接写出满足条件的线段PQ长度的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某学校开运动会,要买一批笔记本和圆珠笔作为奖品,笔记本要买40苯,圆珠笔要买若干支,邱老师去了两家文具店,笔记本和圆珠笔的零售价分别为3元个2元,但甲文具店的营业员说:“若笔记本按零售价,则圆珠笔可按零售价的7折优惠.”乙文具店的营业员说:“笔记本和圆珠笔都可以按零售价的8折优惠.”
(1)设要买的圆珠笔为x支,试用含x的式子表示甲、乙两个文具店的收费;
(2)若学校要买80支圆珠笔作为奖品,你认为邱老师应取哪家文具店较合算?可节省多少钱?
(3)要买圆珠笔y支时,选择甲文具店较合算,求此时节省多少钱?

查看答案和解析>>

科目: 来源: 题型:填空题

2.比较大小:72°45′>72.45°.(填“>”、“<”或“=”)

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.
(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于45°;
(2)证明以上结论.
证明:∵DN平分∠CDE,EM平分∠CED,
∴∠EDN=$\frac{1}{2}∠CDE$,∠NED=$\frac{1}{2}∠$CED.(理由:角平分线的定义)
∵∠CDE+∠CED=90°,
∴∠EDN+∠NED=$\frac{1}{2}$×(∠CDE+∠CED)=$\frac{1}{2}$×90°=45°.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1,y2,都有点(x,y1)、(x,y2)关于点(x,x)对称,则称这两个函数为关于y=x的对称函数,例如,y1=$\frac{1}{2}$x和y2=$\frac{3}{2}$x为关于y=x的对称函数.
(1)判断:①y1=3x和y2=-x;②y1=x+1和y2=x-1;③y1=x2+1和y2=x2-1,其中为关于y=x的对称函数的是①②(填序号)
(2)若y1=3x+2和y2=kx+b(k≠0)为关于y=x的对称函数.
①求k、b的值.
②对于任意的实数x,满足x>m时,y1>y2恒成立,则m满足的条件为m≥-1.
(3)若y1=ax2+bx+c(a≠0)和y2=x2+n为关于y=x的对称函数,且对于任意的实数x,都有y1<y2,请结合函数的图象,求n的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知:抛物线y=x2+(2m-1)x+m2-1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式;
(2)结合图象写出y<0时,对应的x的取值范围;
(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,直接写出矩形ABCD的周长.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某班52名师生准备全部去亮子河旅游,为确定旅游费用,班主任刘老师派班长去了解船只租金情况,班长得到如下表格:
  A型B型 
 (人/只) 5 3
 (元/只) 160 105
(1)若单租A型船或B型船,至少需多少只?
(2)如果两种船都租,且既不超载也不空载,那么你能设计出几种租船方案?
(3)若你是班长,使总租金最少,应该选择怎样的租船方案?

查看答案和解析>>

同步练习册答案