相关习题
 0  279638  279646  279652  279656  279662  279664  279668  279674  279676  279682  279688  279692  279694  279698  279704  279706  279712  279716  279718  279722  279724  279728  279730  279732  279733  279734  279736  279737  279738  279740  279742  279746  279748  279752  279754  279758  279764  279766  279772  279776  279778  279782  279788  279794  279796  279802  279806  279808  279814  279818  279824  279832  366461 

科目: 来源: 题型:填空题

5.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=16.

查看答案和解析>>

科目: 来源: 题型:填空题

4.正整数按如图所示的规律排列,则第29行第30列的数字为870.

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→B→C→M路径匀速慢跑,那么李老师离出发点M的距离y与时间x之间的函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

2.在锐角的内部引射线,当n=1,n=2时,图中小于180°角的个数及规律如表,请你在表中空白处填出射线为3和n的情形.
 图形    
 n 1 2 3 n
 个数及规律 3=1+2=$\frac{2×3}{2}$ 6=1+2+3=$\frac{3×4}{2}$10=1+2+3+4=$\frac{4×5}{2}$ 1+2+3+…+n+1=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AB=4$\sqrt{3}$,M是BC边的中点,MN⊥BC交AC于点N.直角∠PMQ绕顶点M旋转,使得边MP于线段BA交于点P,边MQ与线段AC交于点Q.
(1)判断△PBM与△QNM是否相似,如果相似,请写出证明过程;
(2)设BP的长为x,Rt△APQ的面积为S,求S与x的函数关系式,并写出x的取值范围;
(3)探求BP2,PQ2,CQ2三者数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在一个不透明的盒子中,装有三张卡片,卡片上分别标有数字“1”,“2”和“3”,它们除了数字不同外,其余都相同.
(1)随机地从盒中抽出一张卡片,则抽出数字为“2”的卡片的概率是多少?
(2)若第一次从这三张卡片中随机抽取一张,设记下的数字为x,此卡片不放回盒中,第二次再从余下的两张卡片中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y<4的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知关于x的不等式组$\left\{\begin{array}{l}x-n≥0\\ x-m<0\end{array}\right.$的整数解仅为1,2,3,若m,n为整数,则代数式$1+\frac{n-m}{m-2n}÷\frac{{{m^2}-{n^2}}}{{{m^2}-4mn+4{n^2}}}$的值是$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,射线QN与边长为8的等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN.动点P从点Q出发,沿射线QN以每秒2cm的速度向右移动,以点P为圆心,2$\sqrt{3}$cm为半径的圆也随之移动.若AM=MB=4cm,QM=8cm,且经过t秒,当⊙P与△ABC的边相切时,则t可取的一切值为t=2或3≤t≤7或t=8(单位:秒).

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.
(3)当t为何值时,△CPQ为等腰三角形?
(4)当t为何值时,△CPQ为直角三角形?

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,函数y=ax2+bx+1(a≠0)的图象与x轴的正半轴交于点A,与x轴的负半轴交于点B,与y轴交于点C、P(1,-1),在△PAC中,∠P=90°,PA=PC.

(1)求点A的坐标;
(2)将△PAC沿AC翻折,若点P的对应点Q恰好落在函数y=ax2+bx+1(a≠0)的图象上,求a与b的值.

查看答案和解析>>

同步练习册答案