相关习题
 0  280053  280061  280067  280071  280077  280079  280083  280089  280091  280097  280103  280107  280109  280113  280119  280121  280127  280131  280133  280137  280139  280143  280145  280147  280148  280149  280151  280152  280153  280155  280157  280161  280163  280167  280169  280173  280179  280181  280187  280191  280193  280197  280203  280209  280211  280217  280221  280223  280229  280233  280239  280247  366461 

科目: 来源: 题型:解答题

16.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求点C的坐标;
(2)分别求出经过点C和点D的“蛋圆”的切线的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=2时,求线段PQ的长度;
(2)当t为何值时,△PCQ的面积等于5cm2
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.(1)问题发现与探究:
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM⊥AE于点M,连接BE,则:
①线段AE、BD之间的大小关系是AE=BD,∠ADB=90°,并说明理由.
②求证:AD=2CM+BD.
(2)问题拓展与应用:
如图2、图3,等腰Rt△ABC中,∠ACB=90°,过点A作直线,在直线上取点D,∠ADC=45°,连结BD,BD=1,AC=$\sqrt{2}$,则点C到直线的距离是$\frac{\sqrt{3}-1}{2}$或$\frac{\sqrt{3}+1}{2}$,写出计算过程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知△ABC中,AD⊥BC于点D,BF=AC,DF=DC.
(1)求证:BE⊥AC;
(2)如果∠C=60°,CD=2,求AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在△ABC中,AB=AC,取点D与点E,使得AD=AE,∠BAE=∠CAD,连结BD与CE交于点O.求证:
(1)△ABD≌△ACE;
(2)OB=OC.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示:在平面直角坐标系中,以点M(0,$\sqrt{3}$)为圆心,2$\sqrt{3}$为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于点P,连接PC交x轴于点E.
(1)求点C,P的坐标;
(2)求弓形$\widehat{ACB}$的面积;
(3)探求线段BE和OE存在何种数量关系,并证明你所得到的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t(t>0)秒.

(1)求AB的长;
(2)当t为多少时,△ABD为等腰三角形?
(3)当t为多少时,△ABD≌△ACE,并简要说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,CD=BE,DG⊥BC于G,EF⊥BG交BC于F,且DG=EF.
(1)△DGC与△EFB全等吗?请说明理由;
(2)OB=OC吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线$y=\frac{4}{3}{x^2}+\frac{8}{3}x-4$与x轴交于A,B两点(点A在点B的左侧),与y交于点C,∠BAC的平分线与y轴交于点D,与抛物线相交于点Q,P是线段AB上一点,过点P作x轴的垂线,分别交AD,AC于点E,F,连接BE,BF.
(1)如图1,求线段AC所在直线的解析式;
(2)如图1,求△BEF面积的最大值和此时点P的坐标;
(3)如图2,以EF为边,在它的右侧作正方形EFGH,点P在线段AB上运动时正方形EFGH也随之运动和变化,当正方形EFGH的顶点G或顶点H在线段BC上时,求正方形EFGH的边长.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,△BDC与△CEB在线段BC的同侧,CD与BE相交于点A,∠ABC=∠ACB,AD=AE,求证:BD=CE.

查看答案和解析>>

同步练习册答案