相关习题
 0  280395  280403  280409  280413  280419  280421  280425  280431  280433  280439  280445  280449  280451  280455  280461  280463  280469  280473  280475  280479  280481  280485  280487  280489  280490  280491  280493  280494  280495  280497  280499  280503  280505  280509  280511  280515  280521  280523  280529  280533  280535  280539  280545  280551  280553  280559  280563  280565  280571  280575  280581  280589  366461 

科目: 来源: 题型:解答题

7.某服装经销商甲.库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可卖出120套(两种服装的市场行情互不受影响),目前有一可进B品牌服装的机会,若这一机会错过,估计一年内进不到这种服装.可是,经销商甲手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:
转让数量(套)120011001000900800700600500400300200100
价格(元/套)240250260270280290300310320330340350
(1)猜想并求出转让价格与转让数量之间的函数关系;
(2)现在经销商甲面临三种选择:
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装;
方案3:部分转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装,同时也经销A品牌服装.
如果你是经销商甲,为使自己在服装经销过程中获得最大利润,你选择哪一种方案?怎样选择?为什么?

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知,如图,在?ABCD中,AE⊥BC,DF⊥BA垂足分别是E、F,若AB=3,BC=6,AE=2,则DF=4,AF=2$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知双曲线y=$\frac{k}{x}$上有两点A(-1,-2),B(1,a),直线y=-x+a,P是双曲线第一象限上一动点.
(1)求双曲线和直线的解析式;
(2)过P作y轴的平行线,交直线y=-x+a于Q点,设△PQO的面积为S,S是否存在最小值?若存在则求出最小值,没有则说明理由.
(3)设R(a,a),P点到直线y=-x+a的距离为d,求证:$\frac{PR}{d}$的值为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.某中学在一次爱心捐款活动中,全体同学积极踊跃捐款,抽查了九年级(1)班全班学生捐款情况,并绘制了如下的统计表和统计图:
 捐款(元) 20 50 100 150200 
 人数(人) 4 12 9 2
求:(Ⅰ)本次接受随机抽样调查的学生人数为30人.扇形统计图中的m=40,n=30;
(Ⅱ)求学生捐款数目的众数、中位数和平均数;
(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系中,抛物线y=-$\frac{1}{2}$x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点M为顶点,连接OM.若y与x的部分对应值如表所示:
x-103
y0$\frac{3}{2}$0
(1)求此抛物线的解析式;
(2)如图1,C为线段OM上一点,过C作x轴的平行线交线段BM于点D,以CD为边向上作正方形CDEF,CF、DE分别交此抛物线于P、Q两点,是否存在这样的点C,使得正方形CDEF的面积和周长恰好被直线PQ平分?若存在,求C点的坐标;若不存在,请说明理由;
(3)如图2,平移此抛物线使其顶点为坐标原点,P(0,-1)为y轴上一点,E为抛物线上y轴左侧的一个动点,从E点发出的光线沿EP方向经过y轴上反射后与此抛物线交于另一点F,则当E点位置变化时,直线EF是否经过某个定点?如果是,请求出此定点的坐标,不是则说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知如图:二次函数y=x2-2x-3,根据图象回答下列问题:
(1)设函数图象与x轴交于A、B两点(A在B的左边),与y轴交于点C,求△ABC的面积.
(2)在抛物线的对称轴上找一点P,使PA+PC最小,求出点P的坐标.
(3)若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长.
(4)翻折x轴下方的图象,在形成的新图象中,当直线y=x+b与新图象有三个交点时,则b的值为1或$\frac{13}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图(1),已知抛物线y=x2-2x+c与x轴交于A、B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(-1,0).
(1)求点D的坐标;
(2)若M为直线BC下方抛物线上一动点,当△MCB面积最大时,求点M的坐标,并求出面积的最大值;
(3)如图(2),连接AC、BD并延长交于点E,求tan∠E的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若(a+b)2=12,(a-b)2=8,你能求出ab的值吗?

查看答案和解析>>

科目: 来源: 题型:选择题

9.计算100x•100y+1的结果是(  )
A.100x+y+1B.102x+y+3C.102x+2y+3D.102x+2y+2

查看答案和解析>>

科目: 来源: 题型:填空题

8.一次函数y=(m+4)x-5+2m,当m=$\frac{5}{2}$时,图象经过原点;当m取值范围为-4<m≤$\frac{5}{2}$时,图象不经过第二象限.

查看答案和解析>>

同步练习册答案