相关习题
 0  280398  280406  280412  280416  280422  280424  280428  280434  280436  280442  280448  280452  280454  280458  280464  280466  280472  280476  280478  280482  280484  280488  280490  280492  280493  280494  280496  280497  280498  280500  280502  280506  280508  280512  280514  280518  280524  280526  280532  280536  280538  280542  280548  280554  280556  280562  280566  280568  280574  280578  280584  280592  366461 

科目: 来源: 题型:解答题

17.如图,图4×4正方形网格,每个小正方形的边长为1,请按要求画出下列图形.所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图中画出一个等腰△ABC;
(2)以AC为一边作平行四边形ACED;
(3)直接写出等腰△ABC与平行四边形ACED之间重叠部分面积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知在△ABC中,∠A,∠B,∠C的边分别为a,b,c,点P是AB边上的一个动点(P与A,B不重合),连接PC,过P作PQ∥AC交BC于Q点.
(1)如果a,b满足关系式a2+b2-12a-16b+100=0,c是不等式组$\left\{\begin{array}{l}{\frac{2x-1}{3}>x-4}\\{2x+3<\frac{6x+1}{2}}\end{array}\right.$的最大整数解,试说明△ABC的形状;
(2)设AP=x,S△PCQ=y,试求y与x之间的函数关系式,并注明自变量x的取值范围;
(3)根据(2)所求得的函数关系式计算:当AP取多长时,△PCQ的面积最大?最大面积是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

15.将二次函数y=(x-1)2+3的图象以顶点为对称中心顺时针旋转180°,所得图象的函数解析式是y=-(x-1)2+3.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点.
(1)求这个二次函数的解析式;
(2)若抛物线的顶点为点D,求△BCD的面积;
(3)设M是(1)所得抛物线上第四象限内的一个动点,过点M作直线l⊥x轴交于点F,交直线BC于点N.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,矩形OABC的边OA在x轴上,顶点B(4,2)在抛物线y=ax2+bx上,且抛物线交x轴于另一点D(6,0).
(1)则a=-$\frac{1}{4}$,b=$\frac{3}{2}$;
(2)已知E为BC边上一个动点(不与B、C重合),连结AE交OB于点P,过点E作y轴的平行线分别交抛物线、直线OB于F、G.
①求线段FG的最大值,此时△PFG的面积为$\frac{1}{3}$;
②若以点O为圆心,OP为半径作⊙O,试判断直线AE与⊙O的能否相切?若能请求出E点坐标,若不能请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.a与b互为相反数,c与d互为倒数,m的绝对值是5,试求2015(a+b)-3cd+2m2的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知(a+6)2+$\sqrt{{b}^{2}-2b+3}$=0,则2b2-4b-a的值为0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知抛物线y=-x2-2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=$\frac{1}{2}x-a$分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.
(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.
(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图1,把边长为a的大正方形纸片一角去掉一个边长为b的小正方形纸片,将余下纸片(图1中的阴影部分)按虚线裁开重新拼成一个如图2的长方形纸片(图2中阴影部分).
请解答下列问题:

(1)①设图1中的阴影部分纸片的面积为S1,则S1=a2-b2
    ②图2中长方形(阴影部分)的长表示为a+b,宽表示为a-b,设图2中长方形(阴影部分)的面积为S2,那么S2=(a+b)(a-b)(都用含a、b的代数式表示);
(2)从图1到图2,你得到的一个分解因式的公式是:a2-b2=(a+b)(a-b);
(3)利用这个公式,我们可以计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(28+1)(28+1)(216+1)(232+1)
=(28-1)(28+1)(216+1)(232+1)
=(216-1)(216+1)(232+1)
=(232-1)(232+1)
=264-1
阅读上面的计算过程,请计算:(3+1)(32+1)(34+1)(38+1)(316+1)+0.5.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B.求:
(1)点A、B的坐标;
(2)抛物线的函数表达式;
(3)若点M是该抛物线对称轴上的一点,求AM+BM的最小值及点M的坐标;
(4)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案