相关习题
 0  280425  280433  280439  280443  280449  280451  280455  280461  280463  280469  280475  280479  280481  280485  280491  280493  280499  280503  280505  280509  280511  280515  280517  280519  280520  280521  280523  280524  280525  280527  280529  280533  280535  280539  280541  280545  280551  280553  280559  280563  280565  280569  280575  280581  280583  280589  280593  280595  280601  280605  280611  280619  366461 

科目: 来源: 题型:填空题

13.如图,已知⊙O的半径为2,C为直径AB延长线上一点,BC=2.过C任作一直线l.若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于45°.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE.
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.△OAD∽△CDB,△ADB∽△ECB
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出A的坐标(3,0),顶点B的坐标(用a的代数式表示)(1,-4a).
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当a=$\frac{1}{2}$时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别将于C,D两点,求线段CD的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,正方形ABCD的边长为6cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或4cm.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,正△ABC的边长是4,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当2$\sqrt{2}$≤r≤4时,S的取值范围是2π-4≤x≤$\frac{16}{3}$π-4$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知点A在半径为3的⊙O内,OA等于1,点B是⊙O上一点,连接AB,当∠OBA取最大值时,AB长度为(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

科目: 来源: 题型:填空题

7.通过计算可以得到下列式子:15=1,25=32,35=243,45=1024,55=3125,195=2076099,…,那么:5811的个位上的数字是2.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=3,求BD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.问题情境:我们知道,两边及其中一边所对的角分别对应相等的两个三角形不一定全等,那么在什么情况下,这样的两个三角形才全等呢?为了研究这个问题,我们先思考下面几个问题:
(1)已知:线段a、b和∠a,作△ABC,使得∠A=∠a,AC=b,BC=a.
在图中的方框内完成作图,并在下列横线上填上适当的文字.
作法:①∠MAN=∠a;
②在射线AM上截取线段AC=b;
③以C为圆心、a长为半径画弧交射线AN于点B;
④连接CB,则△ACB就是所求作的三角形.
(2)计算:在上述△ABC中,若∠α=30°,a=5,b=8,则三角形第三边的长度为多少?
(3)在上述作图和计算中,我们发现满足条件的△ABC不唯一,即两边及其中一边所对的角分别对应相等的两个三角形不一定全等.那么再增加什么条件,便可判定两个三角形全等.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则$\frac{CF}{CB}$的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案