相关习题
 0  280648  280656  280662  280666  280672  280674  280678  280684  280686  280692  280698  280702  280704  280708  280714  280716  280722  280726  280728  280732  280734  280738  280740  280742  280743  280744  280746  280747  280748  280750  280752  280756  280758  280762  280764  280768  280774  280776  280782  280786  280788  280792  280798  280804  280806  280812  280816  280818  280824  280828  280834  280842  366461 

科目: 来源: 题型:解答题

8.已知二次函数y1=-x2-2mx-m2-1(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)当m=1时,将函数y1=-x2-2mx-m2-1的图象向上平移5个单位,得到函数y2=-x2+bx+c的图象,且y2=-x2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,如图所示.
①求点A、B、C的坐标;
②如图,矩形MPQN的顶点M、N在线段AB上(点M在点N的坐标且不与点A、B重合),顶点P、Q在抛物线上A、B之间部分的图象上,过A、C两点的直线与矩形边MP相交于点E,当矩形MPQN的周长最大时,求△AME的面积;
③当矩形MPQN的周长最大时,在坐标轴上是否存在点D,使得△ACD的面积与②中△AME的面积相等?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.
(1)求抛物线的解析式、直线AB的解析式;
(2)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.
问题一:当t为何值时,△OPQ为等腰三角形?
问题二:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在△ABC中,AD是BC边上的高,⊙P是△ABC的外接圆.
(1)如图1,若AD=5,BD=1,BC=6,求⊙P的半径;
(2)如图2,若∠ABC=75°,∠ACB=45°,I是△ABC的内心,求$\frac{AI}{AP}$的值;
(3)如图3,若∠ABC-∠ACB=30°,当B,C运动时,$\frac{DC-BD}{AP}$的值是否变化?若不变,求出其值;若变化,求出其变化的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知:二次函数y=x2+2x-3与x轴交于点A、点B(点A在点B左边),与y轴交于点C,点D是抛物线的顶点.连接AD、CD,过点A、点C作直线AC.
(1)求点B、D的坐标及直线AC的解析式;
(2)若点E为抛物线上一点,点F为直线AC上一点,且E、F两点的纵坐标都是2,求线段EF的长;
(3)该抛物线上是否存在点P,使得∠APB=∠ADC?若存在,求出P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,?ABCD中,对角线BD⊥AB,AD=5cm,CD=4cm,动点E从点C出发,沿C-D方向以1cm/s的速度运动,动点F从点A出发,沿A-D-B方向以2cm/s的速度运动,当其中一个动点到达终点时,另一个动点也随之停止运动.连接EF并延长交BA的延长线于点M.设运动时间为t(s),解答下列问题:
(1)当t为何值时,四边形AMDE是平行四边形?
(2)设四边形BCEF的面积为y(cm2),求y与t之间的函数关系式;
(3)直接写出使△BEF是等腰三角形的t的值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若a+b-c=3,a2+b2+c2=3,那么a2013+b2013+c2013=1.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知抛物线y=ax2+bx+c的顶点D(1,3),并经过点A(X0,0),2≤X0≤6,其中a、b、c为常数,
(1)求常数a的取值范围;
(2)若等腰三角形△DEF的E、F在抛物线上,DE=DF,且△DEF的面积为-8a,且EF到x轴的距离等于2,求该抛物线的解析式;
(3)若a=-1,抛物线与y轴于C点,B(2,0),P是线段OB上的动点,把射线CP逆时针旋转45°成为射线CQ,在射线CQ、CP上是否存在点M、N使得BM+MN+NB最小?如果存在,当使得BM+MN+NB最小时,求由BM、MN、NB组成的三角形面积的最大值;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.问题提出:有同样大小正方形256个,拼成如图1所示的16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过多少个小正方形?

我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)
从图2中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.
这就启发我们:为了求出直线L最多穿过多少个小正方形,我们可以转而去考虑当直线L穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.
再让我们来考虑3×3正方形的情况(如图3):为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×3的正方形,我们从两个方向来分析直线l穿过3×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;这样直线L最多可穿过3×3的大正方形中的六条线段,从而直线L上会产生6个交点,这6个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线L最多能经过5个小正方形.
问题解决:
(1)有同样大小的小正方形16个,拼成如图4所示的4×4的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过7个小正方形?
(2)有同样大小的小正方形100个,拼成10×10的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过19个小正方形?
(3)有同样大小的小正方形256个,拼成16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过31个小正方形?
(4)请问如果用一条直线穿n×n大正方形的话,最多可以穿过2n-1个小正方形?
拓展探究:
(5)请问如果用一条直线穿2×3大长方形的话(如图5),最多可以穿过4个小正方形?
(6)请问如果用一条直线穿3×4大长方形的话(如图6),最多可以穿过6个小正方形?
(7)请问如果用一条直线穿m×n大长方形的话,最多可以穿过m+n-1个小正方形?
请将你的推理过程进行简要的叙述.
类比探究:由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题.
(8)如图①有同样大小的小正方体8个,拼成如图①所示的2×2×2的一个大的正方体.请问如果用一条直线穿过这个大正方体的话,最多可以穿过多少个小正方体?

(9)请问如果用一条直线穿过n×n×n大正方体的话,最多可以穿过多少个小正方体?

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知关于x的分式方程$\frac{a-x}{x+2}=1$有增根,则a=-2.

查看答案和解析>>

科目: 来源: 题型:选择题

12.观察下列各单项式:a,-2a2,4a3,-8a4,16a5,-32a6,…,根据你发现的规律,第10个单项式是(  )
A.-29a10B.29a10C.210a10D.-210a10

查看答案和解析>>

同步练习册答案