相关习题
 0  280675  280683  280689  280693  280699  280701  280705  280711  280713  280719  280725  280729  280731  280735  280741  280743  280749  280753  280755  280759  280761  280765  280767  280769  280770  280771  280773  280774  280775  280777  280779  280783  280785  280789  280791  280795  280801  280803  280809  280813  280815  280819  280825  280831  280833  280839  280843  280845  280851  280855  280861  280869  366461 

科目: 来源: 题型:选择题

6.把两块全等的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,DF经过点B,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O逆时针旋转,旋转角为α.其中0°<α<90°,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.下面三个结论:
(1)△APD∽△CDQ;
(2)AP•CQ的值不变,为8;
(3)当45°≤α<90°时,设CQ=x,两块三角板重叠面积为$y=4-x-\frac{8-4x}{4-x}$.
其中正确的是(  )
A.(1)与(2)B.(1)与(3)C.(2)与(3)D.全正确

查看答案和解析>>

科目: 来源: 题型:选择题

5.如果单项式2amb3与$\frac{a{b}^{n}}{3}$是同类项,则m+n=(  )
A.4B.5C.6D.10

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角板的直角顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB、BC于点M、N.
①如图1当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,在图中找到与△PEM相似的三角形并证明;
②在①的条件下,并直接写出PM与PN的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB、BC于点M、N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB、BC的延长线与点M、N.
③请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
④当△PCN是等腰三角形时,若BC=6cm,请直接写出线段BN的长.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为30°
(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°-α.
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.

查看答案和解析>>

科目: 来源: 题型:解答题

2.定义:长宽比为$\sqrt{n}$:1(n为正整数)的矩形称为$\sqrt{n}$矩形.
下面,我们通过折叠的方式折出一个$\sqrt{2}$矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为$\sqrt{2}$矩形.
证明:设正方形ABCD的边长为1,则BD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.
∴EF∥AD.
∴$\frac{BG}{BD}$=$\frac{BF}{AB}$,即$\frac{1}{\sqrt{2}}$=$\frac{BF}{1}$.
∴BF=$\frac{1}{\sqrt{2}}$.
∴BC:BF=1:$\frac{1}{\sqrt{2}}$=$\sqrt{2}$:1.
∴四边形BCEF为$\sqrt{2}$矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是GH、DG.
(2)已知四边形BCEF为$\sqrt{2}$矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是$\sqrt{3}$矩形;
(3)将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一个“$\sqrt{n}$矩形”,则n的值是6.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称△ABC是好三角形.

小丽发现好三角形折叠的次数不同∠B与∠C的数量关系就不同.并作出展示:
第一种好三角形:如图2,沿AD折叠一次,点B与点C重合;
第二种好三角形:如图3,沿着AB1、A1B2经过两次折叠.
(1)小丽展示的第一种好三角形中∠B与∠C的数量关系是∠B=∠C;
(2)如果有一个好三角形ABC要经过5次折叠,最后一次恰好重合.则∠B与∠C的数量关系是∠B=5∠C.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),并且与x轴以及y=x+1的图象分别交于点C、D.
(1)若点D的横坐标为1,求A点、D点、C点的坐标;
(2)在第(1)小题的条件下,求四边形AOCD的面积(即图中阴影部分的面积);
(3)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形?如果存在,求出点P坐标;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为2$\sqrt{21}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;
②点O与O′的距离为4;
③∠AOB=150°;   
④四边形AO BO′的面积为6+3$\sqrt{3}$;   
⑤S△AOC+S△AOB=6+$\frac{{9\sqrt{3}}}{4}$.
其中正确的结论是(  )
A.①②③B.①②③④C.①②③⑤D.①②③④⑤

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知∠BAD=135°,∠BAC=∠BDC=90°,DB=DC=4,AB=2,求AD的长.

查看答案和解析>>

同步练习册答案