相关习题
 0  280676  280684  280690  280694  280700  280702  280706  280712  280714  280720  280726  280730  280732  280736  280742  280744  280750  280754  280756  280760  280762  280766  280768  280770  280771  280772  280774  280775  280776  280778  280780  280784  280786  280790  280792  280796  280802  280804  280810  280814  280816  280820  280826  280832  280834  280840  280844  280846  280852  280856  280862  280870  366461 

科目: 来源: 题型:解答题

16.用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.

(1)AE=A′E,BE=B′E,∠FEH=90°;
(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图2如图所示的正方形EFGH,且不重合的部分也是一个正方形;
①若点A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中点,若正方形A′B′C′D′的面积是4,则大正方形ABCD的面积是36;
②如图3,A′E=B′H=C′G=D′F=3,正方形ABCD的周长比正方形A′B′C′D′的周长的2倍小36,你能求出正方形A′B′C′D′的边长吗?

查看答案和解析>>

科目: 来源: 题型:解答题

15.Rt△DEF与等腰△ABC如图放置(点A与F重合,点D,A,B在同一直线上),AD=3,AB=BC=4,∠EDF=30°,∠ABC=120°.
(1)求证:ED∥AC;
(2)Rt△DEF沿射线AB方向平移,平移距离为a,当点D与点B重合时停止移动:
①当E在BC上时,求a;
②设△DEF与△ABC重叠部分的面积为S,请直接写出S与平移距离a之间的函数关系式,并写出相应的自变量a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)每名熟练工招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多余熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?

查看答案和解析>>

科目: 来源: 题型:解答题

13.(1)$\frac{\sqrt{18}×\sqrt{2}}{\sqrt{3}}$
(2)${({\sqrt{2}+\sqrt{5}})^2}$
(3)$3\sqrt{8}-4\sqrt{32}$
(4)$({\sqrt{18}-\sqrt{\frac{1}{2}}})×\sqrt{8}$
(5)2-$\frac{{\sqrt{27}-\sqrt{12}}}{{\sqrt{3}}}$
(6)$\sqrt{32}-3\sqrt{\frac{1}{2}}+\sqrt{2}$
(7)$\sqrt{40}×\sqrt{10}-21$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.计算下列各题:
(1)2sin45°-$\frac{1}{{\sqrt{2}+1}}$+sin230°+cos260°;
(2)$\sqrt{12}$-3tan30°+(π-4)0+${({-\frac{1}{2}})^{-1}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知如图:抛物线$y=-\frac{1}{2}{x^2}+2x+\frac{5}{2}$与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D为抛物线的顶点,过点D的对称轴交x轴于点E.
(1)如图1,连接BD,试求出直线BD的解析式;
(2)如图2,点P为抛物线第一象限上一动点,连接BP,CP,AC,当四边形PBAC的面积最大时,线段CP交BD于点F,求此时DF:BF的值;
(3)如图3,已知点K(0,-2),连接BK,将△BOK沿着y轴上下平移(包括△BOK)在平移的过程中直线BK交x轴于点M,交y轴于点N,则在抛物线的对称轴上是否存在点G,使得△GMN是以MN为直角边的等腰直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图1,在等腰Rt△ACB中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;点D、E分别在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN与AD交于点G.

(1)若CN=6.5,CE=5,求BD的值.
(2)求证:CN⊥AD.
(3)把等腰Rt△DCE绕点C转至如图2位置,点N是线段BE的中点,延长NC交AD于点H,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,在梯形ABCD中,AD∥BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC=90°,若AB=2,则AD的长是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.

(1)如图1,当BD=2时,AN=$\sqrt{10}$,NM与AB的位置关系是垂直;
(2)当4<BD<8时,
①依题意补全图2;
②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;
(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=CB,tan∠C=$\frac{4}{3}$(如图),点E在CD边上运动,联结BE.如果EC=EB,那么$\frac{DE}{CD}$的值是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案