相关习题
 0  280735  280743  280749  280753  280759  280761  280765  280771  280773  280779  280785  280789  280791  280795  280801  280803  280809  280813  280815  280819  280821  280825  280827  280829  280830  280831  280833  280834  280835  280837  280839  280843  280845  280849  280851  280855  280861  280863  280869  280873  280875  280879  280885  280891  280893  280899  280903  280905  280911  280915  280921  280929  366461 

科目: 来源: 题型:解答题

4.如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(-4,0),抛物线y=ax2-2x经过点A.动点P从O点出发,沿y轴的负半轴运动,速度为1个单位/秒,过点P做y轴的垂线,交抛物线于点B、C,点B在左侧,设运动时间为t秒.
(1)求抛物线的解析式;
(2)设线段BC的长为m,求m与t之间的函数关系式,直接写出自变量t的取值范围;
(3)在(2)的条件下,连接OB、OC,点D为OP上一点,tan∠BOC=$\frac{BC}{OD}$,当t为何值时,PD=PC?

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知△OAB的顶点A(-6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.抛物线y=ax2+bx+c经过A,D,C三点.
(1)求抛物线的解析式;
(2)点P从点A出发,以每秒$\sqrt{2}$个单位的速度沿射线AD运动,过点P作PH垂直射线CD,垂足为H,PH交y轴于F,设DF的长度为d(d≠0),运动时间为t,求d与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,E为抛物线的顶点,连接BC、AE,当△APE与△ABC相似时,求t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,抛物线解析式为y=$\frac{\sqrt{3}}{6}$x2-$\frac{\sqrt{3}}{6}$x-$\sqrt{3}$,与x轴交于A、B两点,以OA为斜边构造直角三角形OAE,且∠OAE=30°,将△OEA沿OE翻折,使点A的对应点为点C.
(1)求点C的坐标;
(2)过点B作DB⊥x轴与EO的延长线交于点D,连接CD,若动点P从点D沿线段DC方向以每秒2个单位的速度向点C运动,设点P的运动时间为t,线段CP的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,连接AD,动点Q从点A沿线段AD方向以每秒1个单位的速度向点D运动,两点同时出发,其中一个点到达终点时,另一个点随之停止运动,当t为何值时,使∠PQA=2∠PEC.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图1,将抛物线y=$\frac{1}{4}{x^2}$的顶点C向右平移m个单位,交y轴于点B,且tan∠BCO=$\frac{1}{2}$.
(1)求此抛物线的解析式;
(2)图2,当⊙A的圆心A在抛物线上运动时,动圆A始终经过点B,MN为⊙A在x轴上截得的弦(点M在N左侧),设MN2=y,A点的横坐标为x(x>0),试求y与x之间的函数关系式;(不要求写出自变量的取值范围)
(3)在(2)的条件下,抛物线的对称轴上是否存在一点Q,使得以A、B、Q为顶点的三角形为等腰直角三角形,并直接写出点A的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,点A,C,F,B在同一直线上,∠ECD=∠DCB,FG∥CD.若∠ECA为α度,则∠GFB为多少度(用关于α的代数式表示).

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知三角形的三边长分别为a=2$\sqrt{3}$-1,b=2$\sqrt{3}$+1,c=$\sqrt{26}$,判断三角形的形状,并求出三角形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.分解因式:x3-3x2-13x+15.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知x=7+4$\sqrt{3}$,y=7-4$\sqrt{3}$,求5x2-16xy+5y2的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.玩具加工厂预计生产甲、乙两种玩具产品共50件,已知生产一件甲种玩具需要A种原料3个,B种原料6个,可获利80元;生产一件乙种玩具需要A种原料5个,B种原料5个,可获利100元,已知玩具加工厂现有A种原料220个,B种原料267个,假设生产甲种玩具x个,共获利y元.
(1)请问有几种方案符合生产玩具的要求;
(2)请你写出y与x之间的函数关系,并用函数的知识来设计一个方案使得获利最大,最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:解答题

6.若a=$\sqrt{17}$-1,求(a5+2a4-17a3-a2+18a-17)2003的值.

查看答案和解析>>

同步练习册答案