相关习题
 0  280796  280804  280810  280814  280820  280822  280826  280832  280834  280840  280846  280850  280852  280856  280862  280864  280870  280874  280876  280880  280882  280886  280888  280890  280891  280892  280894  280895  280896  280898  280900  280904  280906  280910  280912  280916  280922  280924  280930  280934  280936  280940  280946  280952  280954  280960  280964  280966  280972  280976  280982  280990  366461 

科目: 来源: 题型:解答题

1.如图,AB=DC,AC=DB,由此你能猜想出什么结论?并简要说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.由于现在人们生活水平的普遍提高,大家对自己的生存环境越来越关注,特别是对大气环境质量的关注,而空气中又以PM2.5对人体的危害性最大,某市环保局对该市市民进行了一项民意调查,以了解PM2.5浓度升高时对人们户外活动是否有影响,并制作了统计图表的一部分如下:
公众对于户外活动的态度百分比
A.没有影响a
B.影响不大,还可以进行户外活动5%
C.有影响,减少户外活动42%
D.影响很大,尽可能不去户外活动b
E.不关心这个问题6%
(1)结合上述统计图表可得:a=2%,b=45%;
(2)根据以上信息,请直接补全条形统计图;
(3)若该市约400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.(说明:“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物)

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图1,在四边形ABCD中,∠D=60°,点P,Q同时从点D出发,以每秒1个单位长度的速度分别沿D→A→B→C和D→C→B方向运动至相遇时停止,连接PQ.设点P运动的路程为x,PQ的长y,y与x之间满足的函数关系的图象如图2,则下列说法中不正确的是(  )
A.AB∥CDB.AB=8
C.S四边形ABCD=$\frac{161\sqrt{3}}{4}$D.∠B=135°

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,AB是⊙O的直径,点C在半圆上从点A运动到点B(点C不与A、B重合),过点B作⊙O的切线,交AC的平行线OD于点D,连接CB交OD于点E.连接CD,已知:AB=10.
(1)证明:无论点D在何处,CD总是⊙O的切线;
(2)若记AC=x,OD=y,请列出y与x的函数关系式,并写出自变量的取值范围;
(3)试探索,当点C运动到何处时,四边形CAOD是平行四边形,说明理由,并求出此时点E运动的轨迹.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=ax2+bx-4a与直线y=-x+4交两坐标轴于点B,C,且与x轴交另一点A.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限抛物线的图象上,求点D关于直线BC对称的点D′坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求△ABP的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知抛物线y=ax2+bx+c(a<0)经过点A(-3,0)、B(1,0),且与y轴交于点C,设抛物线的顶点为D.
(1)求点C、D的坐标(用含a的式子表示);
(2)当a变化时,△ACD能否为直角三角形?若能?求出所有符合条件的a的值;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.
(1)直接判断函数y=$\frac{2}{x}$(x>0)和y=-2x+1(-4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;
(2)若一次函数y=kx+b(-2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;
(3)将二次函数y=-x2(-1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足$\frac{3}{4}$≤n≤1.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图1,抛物线y=ax2+x+3(a≠0)与x轴的负半轴交于点A(-2,0),顶点为C,点B在抛物线上,且点B的横坐标为10,连接AB、BC、CA,BC与x轴交于点D.

(1)求点D的坐标;
(2)动点P在线段BC上,过点P作x轴的垂线,与抛物线交于点Q,过点Q作QH⊥BC于H,求△PQH的周长的最大值,并直接写出此时点H的坐标;
(3)如图2,以AC为对角线作正方形AMCN,将正方形AMCN在平面内平移得正方形A′M′C′N′,当正方形A′M′C′N′有顶点在△ABC的边AC上(不含端点)时,正方形A′M′C′N′与△ABC重叠部分得到的多边形能否为轴对称图形?如果能,求出此时重叠部分的面积S的值,或重叠部分面积S的取值范围;若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,二次函数y=-$\frac{1}{{m}^{2}}$x2-$\frac{2x}{m}$+3(其中m是常数,且m>0)的图象与x轴交于A、B(点A位于点B的左侧),与y轴交于点C,作CD∥AB,点D在二次函数的图象上,连接BD,过点B作射线BE交二次函数的图象于点E,使得AB平分∠DBE.
(1)求点C的坐标;
(2)求证:$\frac{BD}{BE}$为定值;
(3)二次函数y=-$\frac{1}{{m}^{2}}$x2-$\frac{2x}{m}$+3的顶点为F,过点C、F作直线与x轴交于点G,试说明:以GF、BD、BE的长度为三边长的三角形是什么三角形?请说明理由.

查看答案和解析>>

同步练习册答案