相关习题
 0  281188  281196  281202  281206  281212  281214  281218  281224  281226  281232  281238  281242  281244  281248  281254  281256  281262  281266  281268  281272  281274  281278  281280  281282  281283  281284  281286  281287  281288  281290  281292  281296  281298  281302  281304  281308  281314  281316  281322  281326  281328  281332  281338  281344  281346  281352  281356  281358  281364  281368  281374  281382  366461 

科目: 来源: 题型:填空题

13.如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要51个铁环.

查看答案和解析>>

科目: 来源: 题型:解答题

12.探究发现:阅读解答题:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比较20142015×20142012与20142014×20142013的大小.
解:设20142014=a,x=20142015×20142012,
用这种方法不仅可比大小,也能解计算题哟!
y=20142014×20142013
那么x=(a+1)(a-2),
那么y=a(a-1)
∵x-y=-2<0
∴x<y(填>、<或=).
填完后,你学到了这种方法吗?不妨尝试一下,相信你准行!
(1)将上述解答补充完整
x-y=-2<0;x<y(填>、<或=)
(2)计算3.456×2.456×5.456-3.4563-1.4562
(3)计算:
(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-$\frac{1}{5}$)($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$)-(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-$\frac{1}{5}$-$\frac{1}{6}$)($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$)

查看答案和解析>>

科目: 来源: 题型:解答题

11.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:
(1)求线段CD对应的函数表达式;
(2)求E点的坐标,并解释E点的实际意义;
(3)若已知轿车比货车晚出发20分钟,且到达乙地后在原地等待货车,在两车相遇后当货车和轿车相距30千米时,求货车所用时间.

查看答案和解析>>

科目: 来源: 题型:填空题

10.计算$\overrightarrow{a}$-$\frac{1}{2}$($\overrightarrow{a}$-4$\overrightarrow{b}$)=$\frac{1}{2}\overrightarrow{a}$+2$\overrightarrow{b}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.去年我省规划重建校舍约3876000平方米,这个数精确到十万位并用科学记数法表示为(  )
A.3.8×106平方米B.3.8×107平方米C.3.9×106平方米D.3.9×107平方米

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图,由正三角形OAB绕点O经过连续5次旋转后得到正六边形ABCDEF,那么每次旋转的旋转角的大小是(  )
A.30°B.60°C.90°D.150°

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,点E,F分别为AB,AC的中点,连接CE,BF,CE与BF交于点M,且CE⊥BF,连接EF.
(1)如图1,当∠FEC=45°,EF=2$\sqrt{2}$时,①填空:BC=4$\sqrt{2}$;BF=6.
②求证:AB=AC;
(2)如图2,当∠FEC=30°,BC=8时,求CE和AB的长度;
(3)如图3,在?ABCD中,E,F分别是BC,AD的中点,连接AC,BF,AC与BF交于点M,且BF⊥AC,连接AE,EF,AE与BF交于点G,EF与AC交于点H,求$\frac{GM}{MF}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.发现:
(1)若干平面上三点能够确定一个圆,那么这三点所满足的条件是三点不在同一条直线上.
(2)我们判断四个点A,B,C,D(任意其中个三点不共线)是否在同一圆上时,一般地,先作过A,B,C三点的圆,然后判断点D是否在这个圆上,如果在,则这四个点共圆,如果不在,则不存在同时过这四个点的圆.
思考:
(1)如图1,∠ACB=∠ADB=90°,那么点A,B,C,D四点在(填“在”或“不在”)同一个圆上;
(2)如图2,如果∠ACB=∠ADB=a(a≠90°),(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?芳芳已经证明了点D不在圆内(如图所示),只要能够证明点D也不再圆外,就可以判断点D一定在圆上了,请你完成证明过程.
芳芳的证明过程:
如图3,过A,B,C三点作圆,圆心为O.假设点D在⊙O内,设AD的延长线交⊙O于点P,连接BP.易得∠APB=∠ACB.又由∠ADB是△BPD的外交,得到∠ADB>∠APB,因此∠ADB>∠ACB,这个结论与条件中的∠ACB=∠ADB矛盾,所以点D不在圆内.
应用:
如图4,在四边形ABCD中,连接AC,BD,∠CAD=∠CBD=90°,点P在CA的延长线上,连接DP.若∠ADP=∠ABD.求证:DP为Rt△ACD的外接圆的切线.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=45°.

查看答案和解析>>

科目: 来源: 题型:填空题

4.根据要求,用四舍五入法取下列各数的近似数.
(1)146491≈1.5×105(精确到万位);  
(2)3952≈4.0×103(精确到百位)

查看答案和解析>>

同步练习册答案