相关习题
 0  281241  281249  281255  281259  281265  281267  281271  281277  281279  281285  281291  281295  281297  281301  281307  281309  281315  281319  281321  281325  281327  281331  281333  281335  281336  281337  281339  281340  281341  281343  281345  281349  281351  281355  281357  281361  281367  281369  281375  281379  281381  281385  281391  281397  281399  281405  281409  281411  281417  281421  281427  281435  366461 

科目: 来源: 题型:解答题

7.【问题提出】
对于特殊四边形,通常从定义、性质、判定、应用四个方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形--筝形.
【定义】
有且只有两组邻边分别相等的四边形称为筝形,如图,筝形ABCD是中,AB=AD,CB=CD且AB≠BC.
【性质】
按下列分类用文字语言填写相应的性质:
从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.
从边看:有且只有两组邻边分别相等.
从对角线看:有且只有一条对角线被另一条对角线垂直平分.
【判定】
按要求用文字语言填写相应的判断方法,补全图形;
方法1:从边看,有且只有两组邻边分别相等的四边形.
方法2?从对角线看:有且只有一条对角线被另一条对角线垂直平分.
已知,如图,四边形ABCD中,AC垂直平分BD于O点,且AO≠CO.
求证:四边形ABCD是筝形.
证明:
【应用】
请利用筝形的定义、性质和判定解决以下问题.
(1)探索筝形ABCD的面积公式;
(2)筝形ABCD有外接圆吗?如果有,请作出他的对称轴;如果没有,请你在筝形ABCD中添加一个条件,使它有外接圆;
(3)筝形ABCD有内切圆吗?如果有,请作出它的内切圆,如果没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如图,正方形ABCD的边长为1,P为BC上任意一点(含B、C两点),分别过点B、C、D作射线AP的垂线,垂足分别为E、F、G,以下判断:
①△ADG≌△BAE;
②BE=AE-PE;
③BE+CF+DG的最小值是$\sqrt{2}$;
④BE+CF+DG的最大值是2.
其中正确的是①③④.(把所有正确的结论的序号都填在横线上)

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,P为等边三角形ABC中AB边上的动点,沿A→B的方向运动,到达点B时停止,过P作PD∥BC.设AP=x,△PDC的面积为y,则y关于x的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

4.计算:
(1)(-3ab2c3)×(-2ab)2
(2)$({x}^{6}+2{x}^{5}-\frac{1}{2}{x}^{4})÷{(\frac{1}{2}{x}^{2})}^{2}$
(3)(2x-3y)(3x+2y)-(2x-2y)2

查看答案和解析>>

科目: 来源: 题型:解答题

3.计算:
(1)$\sqrt{4}$+(-1)2015-|1-$\sqrt{2}$|
(2)(a34•(a24÷(a43

查看答案和解析>>

科目: 来源: 题型:填空题

2.计算:(-a)2•(-a2)=-a4
(6x2-3x)÷3x=2x-1.

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的余弦值等于(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为(  )
A.58°B.32°C.80°D.64°

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,二次函数y=x2+bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒$\sqrt{2}$个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.
(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,过点Q作QN⊥x轴于N,交抛物线于点M,连结MC,MB,当t为何值时,△MCB的面积最大,并求出此时点M的坐标和△MCB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某工厂在一定的时间内加工一批零件,如果每天加工44个,则比规定任务少加工20个;如果每天加工50个零件,则可超额完成10个,求规定加工零件的个数.

查看答案和解析>>

同步练习册答案