相关习题
 0  281242  281250  281256  281260  281266  281268  281272  281278  281280  281286  281292  281296  281298  281302  281308  281310  281316  281320  281322  281326  281328  281332  281334  281336  281337  281338  281340  281341  281342  281344  281346  281350  281352  281356  281358  281362  281368  281370  281376  281380  281382  281386  281392  281398  281400  281406  281410  281412  281418  281422  281428  281436  366461 

科目: 来源: 题型:选择题

5.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则AE的长为(  )
A.$\frac{4}{25}$B.$\frac{4}{5}$C.$\frac{32}{25}$D.$\frac{21}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图①,在矩形ABCD中,M为BC上任一点,现将三角板放在矩形ABCD上,使三角板的直角顶点P与点M重合,三角板的一边所在直线过点D,另一边交AB于F.
(1)如果$\frac{AB}{BM}$=1,求证:PF=PD;
(2)如图②,移动三角板,使定点P始终在AM上,且直角的两边与AB、AD交于F、E,若$\frac{AB}{BM}$=$\frac{m}{n}$,请直接写出$\frac{PF}{PE}$的值;
(3)如图③,将(2)中的“矩形ABCD”改为“平行四边形ABCD”,且使原三角板改为钝角三角形,并使∠FPE=∠D,钝角的两边与AB、AD交于F、E,其他条件不变,问(2)中$\frac{PF}{PE}$的值是否仍然成立?若成立,请给予证明,不成立,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.
(1)求证:∠CBP=2∠DCP;
(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=$\sqrt{2}$CE;
(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1,点E是正方形ABCD的边CD上一点(不与C、D重合),连接AE,过点A作AF⊥AE交CB的延长线于点F
(1)求证:AE=AF;
(2)连接EF,N为EF之中点,连接BN,求$\frac{BN}{CE}$的值;
(3)以BF为边作正方形BFMH,如图2,CH与AF相交于点Q,当E在CD上运动(不与C、D重合),问∠CQD的大小是否发生变化?若不变,求其值;若变化,请指出其范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1
﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.
﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.思考探究
思考.
(1)计算:$\sqrt{{2}^{2}}$=2;$\sqrt{(-\frac{2}{3})^{2}}$=$\frac{2}{3}$;$\sqrt{{0}^{2}}$=0.
(2)计算:($\sqrt{2}$)2=2;($\sqrt{\frac{2}{3}}$)2=$\frac{2}{3}$;($\sqrt{0}$)2=0.
探究
(3)对于任意实数a,$\sqrt{{a}^{2}}$=|a|.
(4)对于任意非负实数a,($\sqrt{a}$)2=a.

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图所示,在函数y=-$\frac{1}{3}$x+$\frac{4}{3}$(x>0)的图象上,△P1OA,△P2A1A2,△P2A2A3,…,△PnAn-1An都是等腰直角三角形,且直角边OA1,A1A2,…,An-1An都在x轴上,则An的坐标为Pn[1+$\frac{3}{4}$+$\frac{9}{16}$+…($\frac{3}{4}$)n-1,($\frac{3}{4}$)n-1].

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,
(1)求二次函数的解析式.
(2)设二次函数与x轴的另一个交点为D,并在抛物线的对称轴上找一点P,使三角形PBD的周长最小,求出点D和点P的坐标.
(3)在直线CD下方的抛物线上是否存在一点E,使得△DCE的面积最大,若有求出点E坐标及面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.若将抛物线F:抛物线y=x2+bx$\frac{9}{2}$改成y=ax2+bx+c,抛物线的顶点为P,与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.且a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.
(1)求证:AD=BE;
(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;
(3)若PQ=3,PE=1,求AD的长.

查看答案和解析>>

同步练习册答案