相关习题
 0  281246  281254  281260  281264  281270  281272  281276  281282  281284  281290  281296  281300  281302  281306  281312  281314  281320  281324  281326  281330  281332  281336  281338  281340  281341  281342  281344  281345  281346  281348  281350  281354  281356  281360  281362  281366  281372  281374  281380  281384  281386  281390  281396  281402  281404  281410  281414  281416  281422  281426  281432  281440  366461 

科目: 来源: 题型:解答题

5.已知关于x的一元二次方程x2+2x+$\frac{k-1}{2}$=0有两个不相等的实数根,k为正整数.
(1)求k的值;
(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+$\frac{k-1}{2}$的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.如图:(1)∠1和∠5是直线AB与直线DC被直线BE所截形成的同位角,
(2)∠2和∠4是直线AB与直线DC被直线AC所截形成的内错角.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,?ABCD的对角线AC、BD交于点O,E、G在直线AC上,AE=CG,F、H直线BD上,BF=DH,求证:EF=HG.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,已知菱形ABCD中,AB=6,∠B=60°.E是BC边上一动点,F是CD边上一动点,且BE=CF,连接AE、AF.
(1)∠EAF的度数是60°;
(2)求证:AE=AF;
(3)延长AF交BC的延长线于点G,连接EF,设BE=x,EF2=y,求y与x之间的函数关系式.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,已知在△ABC中,AD⊥BC,垂足为点D,若AD=$\frac{1}{2}$BC,EF为中位线,那么以EF为直径的圆与直线BC有怎样的位置关系?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在长方形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边分别与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是($\sqrt{3}$,1).随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是y=$\sqrt{3}$x-2.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,在△ABC中,BC=2$\sqrt{2}$,∠ABC=45°=2∠ECB,BD⊥CD,则(2BD)2=16-8$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.随着私家车的增多,节假日期间,高速公路收费站经常拥堵严重,去年元旦早上8点,某收费站出城方向有120辆汽车排队等候收费通过,假设每分钟到达收费站的汽车数量保持不变,每个收费窗口每分钟可以通过的汽车数量也不变,若开放5个收费窗口,则需要20分钟才能将原来排队等候的汽车及后来到达的汽车全部收费通过;若开放全部6个窗口,只需15分钟.
(1)请求出每分钟到达收费站的车辆数以及每个收费窗口每分钟可以通过的车辆数;
(2)为了缓减拥堵,今年元旦节前,该收费站将出城方向的6个窗口中的若干个改造成了ETC通道,已知ETC通道每分钟可以通过10辆车,今年元旦早上8点有130辆车排队等候收费通过,在每分钟到达的汽车数量比去年同期增长50%的情况下,不到5分钟所有排队等候的汽车及后来到达的汽车全部收费通过,请问至少有几个收费窗口改造成了ETC通道?

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=-x上有一动点Q,连结OP,PQ,已知△OPQ的面积为$\sqrt{2}$,则点Q的坐标为($\sqrt{2}$,-$\sqrt{2}$)或(-$\sqrt{2}$,$\sqrt{2}$)..

查看答案和解析>>

同步练习册答案