相关习题
 0  281274  281282  281288  281292  281298  281300  281304  281310  281312  281318  281324  281328  281330  281334  281340  281342  281348  281352  281354  281358  281360  281364  281366  281368  281369  281370  281372  281373  281374  281376  281378  281382  281384  281388  281390  281394  281400  281402  281408  281412  281414  281418  281424  281430  281432  281438  281442  281444  281450  281454  281460  281468  366461 

科目: 来源: 题型:解答题

13.如图①,在△ABC外作△BAD、△CAE,使∠BAD=∠CAE=90°,AB=AD,AC=AE.
(1)如图②,在图①的基础上作平行四边形ADFE,取BD中点P,连接PF、PC,试猜想PF与PC的数量关系和位置关系,并说明理由;
(2)如图③,在图①的基础上把△CAE沿边AC翻折,作平行四边形ABFE1,取BD中点P,连接PF、PC,在图③中按要求补全图形,并判断此时PF与PC的数量关系和位置关系,直接写出结论.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在平面直角坐标系xOy中,已知二次函数y=-$\frac{1}{4}{x}^{2}+mx+n$的图象经过点A(2,0)和点B(1,$\frac{3}{4}$),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.
(1)求该二次函数的表达式;
(2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t≤0)的变化规律为y1=$\frac{3}{4}$-2t.设点C是线段OP的中点,作DC⊥l于点D.
①点P运动的过程中,$\frac{CD}{OP}$是否为定值,请说明理由;
②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=1-3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=$\sqrt{3}$,求t的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图,已知A(0,-4)、B(3,-4),C为第四象限内一点且∠AOC=70°,若∠CAB=20°,则∠OCA=40°.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,AB切⊙O于点B,AC交⊙O于点M、N,若四边形OABN恰为平行四边形,且弦BN的长为10cm.
(1)求⊙O的半径长及图中阴影部分的面积S.
(2)求MN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于A、B两点、与y轴交于点C,经过点B的直线y=-x+4与y轴交于点D,点P在抛物线的对称轴上,且P点的横坐标是1.
(1)求抛物线的解析式;
(2)在第一象限的抛物线上有一个动点M,过点M作直线MN⊥x轴于点N,交直线BD于点E,若点M到直线BD的距离与BN的长度之比为2$\sqrt{2}$:1,求点M的坐标;
(3)如图2,若点P位于x轴上方,且∠PAB=60°,点Q是对称轴上的一个动点,将△BPQ绕点P顺时针旋转60°得到△B′PQ′(B的对应点为B′,Q的对应点为Q′),是否存在点Q,使△BQQ′的面积是$\frac{\sqrt{3}}{4}$?若存在,请求出PQ的长;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上的一点,以BD为直径作⊙O,过O作AC的垂线交AC于点E,恰好垂足E在⊙O上,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=2,cosB=$\frac{3}{5}$,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,⊙O1与⊙O2都经过A、B两点,且点O2在⊙O1上,点C是弧A O2B上的一动点(点C不与点A、B重合),连接AC并延长AC交O2点P,连接AB,BC,BP,无论点C怎样移动,(1)∠BAP (2)∠APB (3)∠ABC(4)∠ACB(5)∠PBC(6)∠PCB中,大小都不变的角是(2)(4)(5)(6)(填写序号)

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知等边△ABC
(1)如图1,P为等边△ABC外一点,且∠BPC=120°,求证:PA=PB+PC;
(2)如图2,P为等边△ABC内一点,∠APD=120°,求证:PA+PD+PC>BD;
(3)如图3,∠APD=120°,若∠APC=150°,PA=4,PC=5,PD=8,则$\frac{AC}{BD}$=$\frac{\sqrt{41+20\sqrt{3}}}{13}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图抛物线y=ax2+bx+c经过A、B、C三点,连接AB、AC,AB=2$\sqrt{13}$,tan∠ABC=$\frac{2}{3}$,SABC=20.
(1)求此抛物线的解析式;
(2)点D为x轴上方抛物线上一点,过点D作DE⊥x轴,垂足为点E,交线段AB于点F.当FD=FE时,求点E的坐标;
(3)在(2)的条件下,点P为射线AE上一动点,连接CP交y轴于点M,连接ME,并过点M作AE的平行线,过点E作ME的垂线,这两条直线相交于点N.当△MEN中有一个角的正切值为$\frac{1}{2}$时,求出点P坐标,并判断点P是否在(1)中的抛物线上.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知△ABC中,AB=AC,∠ABC=60°,DC∥AB,连接AD交BC于E,点F在AB延长线上,且∠ADF=∠ACB.
(1)当E为BC边中点时,如图1,求证:CD=CE+BF;
(2)如图2,当E为BC延长线上一点时,CD、CE、BF有怎样的数量关系?请证明.

查看答案和解析>>

同步练习册答案