相关习题
 0  281409  281417  281423  281427  281433  281435  281439  281445  281447  281453  281459  281463  281465  281469  281475  281477  281483  281487  281489  281493  281495  281499  281501  281503  281504  281505  281507  281508  281509  281511  281513  281517  281519  281523  281525  281529  281535  281537  281543  281547  281549  281553  281559  281565  281567  281573  281577  281579  281585  281589  281595  281603  366461 

科目: 来源: 题型:解答题

1.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现;当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,
则DF=EC=b-a.
∵S四边形ADCB=S△ACD+S△ABC=$\frac{1}{2}$b2+$\frac{1}{2}$ab.
又∵S四边形ADCB=S△ADB+S△DCB=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2
证明:连结BD,过点B作DE边上的高BF
∵S多边形ACBED=S△ACB+S△ABE+S△ADE=$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab
又∵S多边形ACBED=S△ACB+S△ABD+S△BDE=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2

查看答案和解析>>

科目: 来源: 题型:填空题

20.计算:
(1)(x23=x6 
(2)xn+2÷x2=xn 
(3)(a24•(-a)3=-a11

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)请直接写出点B、D的坐标:B(-4,0),D(0,2$\sqrt{3}$);
(2)求抛物线的解析式;
(3)求证:ED是⊙P的切线;
(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.

查看答案和解析>>

科目: 来源: 题型:选择题

18.7x+1是不小于-3的负数,表示为(  )
A.-3≤7x+1≤0B.-3<7x+1<0C.-3≤7x+1<0D.-3<7x+1≤0

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.
(1)当点F是BC的中点时,求证:直线FG与⊙O相切;
(2)若FG∥BE时,求AE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4$\sqrt{3}$cm.
(1)求水的最大深度(即CD)是多少?
(2)求杯底有水部分的面积(阴影部分).

查看答案和解析>>

科目: 来源: 题型:解答题

15.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.
(1)求证:△DEB∽△ACB;
(2)当点F与点A重合时(如图①),求线段BD的长;
(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…An(xn,yn)(n为正整数)依次是反比例函数y=$\frac{9}{x}$图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以An(xn,yn)为顶点且经过点Bn-1,Bn,等腰△AnBn-1Bn为第n个三角形.
(1)求出A1的坐标;
(2)求出第一条抛物线的解析式;
(3)请直接写出An的坐标(2n-1,$\frac{9}{2n-1}$).

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,在正方形ABCD中,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ.给出如下结论:
①DQ与半圆O相切;②$\frac{PQ}{BQ}=\frac{4}{3}$;③∠ADQ=2∠CBP;④cos∠CDQ=$\frac{3}{5}$.
其中正确的是①③(请将正确结论的序号填在横线上).

查看答案和解析>>

科目: 来源: 题型:解答题

12.判断代数式($\frac{2{a}^{2}+2a}{{a}^{2}-1}-\frac{{a}^{2}-a}{{a}^{2}-2a+1}$)$÷\frac{a}{a+1}$的值能否等于-1?并说明理由.

查看答案和解析>>

同步练习册答案