相关习题
 0  281561  281569  281575  281579  281585  281587  281591  281597  281599  281605  281611  281615  281617  281621  281627  281629  281635  281639  281641  281645  281647  281651  281653  281655  281656  281657  281659  281660  281661  281663  281665  281669  281671  281675  281677  281681  281687  281689  281695  281699  281701  281705  281711  281717  281719  281725  281729  281731  281737  281741  281747  281755  366461 

科目: 来源: 题型:选择题

3.设$6-\sqrt{13}$的整数部分为a,小数部分为b,那么2a-b的值是(  )
A.$3-\sqrt{3}$B.$4-\sqrt{13}$C.$\sqrt{13}$D.$4+\sqrt{13}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列根式中,属于最简二次根式的是(  )
A.$\sqrt{0.5mn}$B.$\sqrt{{a^2}+1}$C.$\sqrt{27}$D.$-\sqrt{125}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知:在正方形ABCD中,对角线AC长为10,点A、C到直线l的距离均为3,则点B到直线l的距离为2或4或8.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,
(1)求证:AB=EF;
(2)若∠CAE=∠BCE,AB=6,AC=8,
①求EC的长;
②求线段PE的长.

查看答案和解析>>

科目: 来源: 题型:填空题

19.若关于x方程$\frac{a}{x-2}$=$\frac{4}{x-2}$+1无解,则a的值为4.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,在Rt△ABC中,∠ACB=90°,AB=5,cosB=$\frac{3}{5}$,现作如下操作:将△ACB沿直线AC翻折,然后再放大得到△A′CB′,联结A′B,如果△AA′B是等腰三角形,那么B′C的长是$\frac{27}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列一元二次方程中,有两个不相等实数根的方程是(  )
A.x2+1=0B.x2-3x+1=0C.x2-2x+1=0D.x2-x+1=0

查看答案和解析>>

科目: 来源: 题型:解答题

16.计算
(1)a2•(-a4)+(-a32              
(2)${(-\frac{1}{4})^{-1}}+{(-2)^2}×{5^0}-{(\frac{1}{2})^{-2}}$
(3)(2a+b+c)(2a-b+c)
(4)(x+2)2-(x-1)(x-2)

查看答案和解析>>

科目: 来源: 题型:填空题

15.如图,在平行四边形ABCD中,AE⊥BC,AF⊥CD,若平行四边形ABCD的周长为48,AE=5,AF=10,则平行四边形ABCD的面积是80.

查看答案和解析>>

科目: 来源: 题型:解答题

14.长宽比为$\sqrt{n}:1$(n为正整数)的矩形称为$\sqrt{n}$矩形.下面,我们通过折叠的方式折出一个$\sqrt{2}$矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为$\sqrt{2}$矩形.
证明:设正方形ABCD的边长为1,则BD=$\sqrt{{1^2}+{1^2}}=\sqrt{2}$.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.∴EF∥AD.
∴$\frac{BG}{BD}=\frac{BF}{AB}$,即$\frac{1}{{\sqrt{2}}}=\frac{BF}{1}$,∴$BF=\frac{1}{{\sqrt{2}}}$.∴$BC:BF=1:\frac{1}{{\sqrt{2}}}=\sqrt{2}:1$.
∴四边形BCEF为$\sqrt{2}$矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是$\sqrt{2}$-1;
(2)已知四边形BCEF为$\sqrt{2}$矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN为$\sqrt{3}$矩形;
(3)将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一个“$\sqrt{n}$矩形”,则n的值是6.

查看答案和解析>>

同步练习册答案