相关习题
 0  281802  281810  281816  281820  281826  281828  281832  281838  281840  281846  281852  281856  281858  281862  281868  281870  281876  281880  281882  281886  281888  281892  281894  281896  281897  281898  281900  281901  281902  281904  281906  281910  281912  281916  281918  281922  281928  281930  281936  281940  281942  281946  281952  281958  281960  281966  281970  281972  281978  281982  281988  281996  366461 

科目: 来源: 题型:解答题

16.在数学课上,老师要求学生探究如下问题:
(1)如图1,在等边三角形ABC内有一点P,且PA=2,PB=$\sqrt{3}$,PC=1,试求∠BPC的度数.李华同学一时没有思路,当他认真分析题目信息后,发现以PA、PB、PC的长为边构成的三角形是直角三角形,他突然有了正确的思路:如图2,将△BPC绕点B逆时针旋转60°,得到△BP′A,连接PP′,易得△P′PB是等边三角形,△PP′A是直角三角形.则∠BPC=150°.
(2)如图3,在正方形ABCD内有一点P,且PA=$\sqrt{5}$,BP=$\sqrt{2}$,PC=1,试求∠BPC的度数.
(3)如图4,在正六边形ABCDEF内有一点P,且PA=2$\sqrt{13}$,PB=4,PC=2.
①∠BPC=120°;
②求正六边形ABCDEF的边长.

查看答案和解析>>

科目: 来源: 题型:解答题

15.我们借助学习“三角形全等的判定”获得的经验与方法,对“全等四边形的判定”进行探究.
规定:
(1)四条边对应相等,四个角对应相等的两个四边形全等.
(2)在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.
【初步思考】
满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
求证:四边形ABCD≌四边形A1B1C1D1
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是①②③(填序号),概括可得一个“全等四边形的判定方法”,这个判定方法是有一组邻边和三个角对应相等的两个四边形全等.
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个不同于(3)中所示的全等四边形的判定方法.

查看答案和解析>>

科目: 来源: 题型:选择题

14.下列各图中,经过折叠能围成立方体的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知AB是⊙O的弦,OA=4,∠A=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接BD.
(1)求弦AB的长;
(2)当∠D=15°时,求∠AOD的度数;
(3)当BC的长度为多少时,以B、C、D为顶点的三角形与以A、O、C为顶点的三角形相似?请写出解答过程.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,抛物线y=ax2-3ax+c与x轴交于A、B两点,与y轴正半轴交于点C,抛物线的对称轴交x轴于点G,已知B(4,0),tan∠OAC=2.
(1)求抛物线的解析式;
(2)将∠CAB绕点A顺时针旋转,边AB旋转后与对称轴相交于点D,边AC旋转后与抛物线相交于点E,与对称轴相交于点F.
①当点F恰好为BC与对称轴的交点时,求点D坐标;
②当AG=DG时,求点E坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知正方形ABCD中,AB=6,E为线段BC上一动点,NF⊥AE,交线段AB于F,交线段CD于N.
(1)求证:AE=NF.
(2)连接BD交线段AE于点M,当NF经过点M时,探究∠EAN是否为定值?若是,求其值;若不是,说明理由.
(3)在(2)的条件下,连接NE,若∠BAE=30°,则S△AEN=36-12$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系中,点O为坐标原点,抛物线y=kx2-2kx-3k与x轴交于点B、C(点B在点C的左侧),与y轴正半轴交于点A,满足:AO=$\frac{3}{4}$BC.
(1)如图1,求抛物线的解析式;
(2)如图2,点E为第一象限内抛物线上的一动点,连接BE交y轴于点D,当点E的横坐标等于线段OD的2倍时,求点E的坐标;
(3)在(2)的条件下,如图3,过点B作BF⊥BE,点P在抛物线上,连接EP交BF于点F,过点B作BG⊥EF于点H,交直线AE于点G,当∠BGE=90°-$\frac{1}{2}$∠BGF时,求线段EP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知过点(0,-$\frac{1}{4}$)的抛物线C1:y=ax2+bx+c的顶点为Q(1,0),现将该抛物线上所有点的纵坐标加h(h>0),横坐标不变,得到新的抛物线,记为C2,在y轴的负半轴作一条平行于x轴的直线,与两条抛物线交于A、B、C、D四点,直线AD与x轴的距离是m2(m>0)
(1)求抛物线C1的解析式;
(2)当h=4时,设抛物线C2与x轴的正半轴交于点E,过点E作x轴的垂线,交直线y=x+1于点F,点P在抛物线C2上,如果要求S△EFP≤6时,求点P横坐标xp的取值范围;
(3)作抛物线C1的对称轴,与直线AD交于点M,与抛物线C2交于点N,若点A,C关于y轴对称,求tan∠MDN与tan∠MCQ的比值(用含m的代数式表示)

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图1,平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为M.D在y轴上,OB=OD=3,OA=5.
(1)试用含a的式子表示点M的坐标;
(2)若S△ABC-S△ACM=$\frac{50}{3}$;
①求抛物线y=ax2+bx+c的解析式;
②如图2,将△BOD绕点O沿逆时针方向旋转α(0°<α≤180°)得到△B′OD′,直线AD与BC相交于点Q,求点Q纵坐标的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知,四边形ABCD为正方形,E,F分别在BC,CD上,△AEF为等边三角形,G为CD上一点,EG平分∠AGC,求证:AG=FG+EG.

查看答案和解析>>

同步练习册答案