相关习题
 0  282079  282087  282093  282097  282103  282105  282109  282115  282117  282123  282129  282133  282135  282139  282145  282147  282153  282157  282159  282163  282165  282169  282171  282173  282174  282175  282177  282178  282179  282181  282183  282187  282189  282193  282195  282199  282205  282207  282213  282217  282219  282223  282229  282235  282237  282243  282247  282249  282255  282259  282265  282273  366461 

科目: 来源: 题型:解答题

20.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)求证:直线EF是⊙O的切线;
(2)若CF=3,cosA=$\frac{2}{5}$,求出⊙O的半径和BE的长;
(3)连接CG,在(2)的条件下,求$\frac{CG}{EF}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.阅读材料:如图1,四边形ABCD的对角线AC,BD交于点O,点M是AB边上的一点,过点M分别作ME∥BD,MF∥AC交直线AC,BD于点E,F,显然四边形OEMF是平行四边形.

探究发现:
(1)当对角线AC,BD满足AC⊥BD时,四边形OEMF是矩形.
(2)如图2,若四边形ABCD是矩形,且M是AB的中点,判断四边形OEMF是什么特殊的平行四边形,并写出证明过程.
拓展延伸:
(3)如图3,在四边形ABCD为矩形的条件下,若点M是边AB延长线上的一点,此时OA,ME,MF三条线段之间存在怎样的数量关系?并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

18.在“百度”搜索中输入“新版中小学生则”,相关结果约1660000个,这个数据可用科学记数法表示为(  )
A.166×104B.1.66×105C.1.66×106D.0.166×107

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在平面直角坐标系中,直线y=-$\frac{3}{4}$x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.
(1)填空:b=3;
(2)求点D的坐标;
(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

16.在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).在旋转正方形OABC的过程中,△MBN的周长为6.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C运动,点P不与点B重合,以BP为边在BC上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).
(1)用含t的代数式表示线段PC的长;
(2)当点E落在线段AC上时,求t的值;
(3)在点P运动的过程中,求S与t之间的函数关系式;
(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.甲、乙两人从学校出发沿同一路线步行到距学校1500米处的图书馆看书,甲与乙在行进过程中以各自的速度匀速行走,甲比乙先出发5分钟,乙比甲先到达图书馆,甲、乙两人间的距离y(米)与甲的行走时间x(分)之间的函数图象如图所示.
(1)求甲、乙两人行走的速度;
(2)当乙到达图书馆时,求甲、乙两人间的距离;
(3)求线段BC所在直线对应的函数表达式.

查看答案和解析>>

科目: 来源: 题型:选择题

13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H,以O为圆心,OC为半径的圆弧交OA于D,若直线GH与弧CD所在的圆相切于矩形内一点F,则下列结论:①AG=CH;②GH=$\frac{5}{3}$;③直线GH的函数关系式y=-$\frac{3}{4}x+\frac{5}{4}$;④梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,⊙P的半径为$\frac{1}{4}$.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=$\frac{4}{5}$,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.
(1)求AD的长;
(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;
(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,BD是△ABC的角平分线,点E、F分别在边BC、AB上,且DE∥AB,∠DEF=∠A.
(1)求证:BE=AF;
(2)设BD与EF交于点M,联结AE交BD于点N,求证:BN•MD=BD•ND.

查看答案和解析>>

同步练习册答案