相关习题
 0  282258  282266  282272  282276  282282  282284  282288  282294  282296  282302  282308  282312  282314  282318  282324  282326  282332  282336  282338  282342  282344  282348  282350  282352  282353  282354  282356  282357  282358  282360  282362  282366  282368  282372  282374  282378  282384  282386  282392  282396  282398  282402  282408  282414  282416  282422  282426  282428  282434  282438  282444  282452  366461 

科目: 来源: 题型:解答题

6.计算:
(1)(2$\sqrt{3}$+$\sqrt{2}$)(2$\sqrt{3}$-$\sqrt{2}$);
(2)$\frac{2}{\sqrt{3}+1}$+$\frac{\sqrt{3}}{2}$+1;
(3)$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$);
(4)3$\sqrt{8}$+2$\sqrt{18}$-3$\sqrt{22}$-$\sqrt{72}$;
(5)($\frac{3}{4}\sqrt{15}$-$\sqrt{12}$)$÷\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.计算题:
(1)($\sqrt{18}$-2$\sqrt{2}$)$\sqrt{\frac{1}{12}}$;
(2)($\sqrt{2}$-$\sqrt{12}$)($\sqrt{18}$+$\sqrt{48}$);
(3)(5$\sqrt{\frac{1}{2}}$-6$\sqrt{\frac{3}{2}}$)($\frac{1}{4}\sqrt{8}$-$\sqrt{\frac{2}{3}}$);
(4)($\frac{1}{2}\sqrt{3}$+$\sqrt{8}$)($\sqrt{8}$-$\frac{1}{2}\sqrt{3}$);
(5)(10$\sqrt{48}$-6$\sqrt{27}$+4$\sqrt{12}$)$÷\sqrt{6}$.
(6)($\sqrt{12}$-2$\sqrt{18}$)2

查看答案和解析>>

科目: 来源: 题型:填空题

4.抛物线y=x2-4x的对称轴是x=2,说明在对称轴的左侧,即x<2时,y随x的增大而减小.

查看答案和解析>>

科目: 来源: 题型:填空题

3.抛物线y=x2+2x+c与y轴相交于点C,点O为坐标原点,点A是抛物线y=x2+2x+c与x轴的公共点,若OA=OC,则点A的坐标为(-3,0)、(1,0).

查看答案和解析>>

科目: 来源: 题型:解答题

2.解下列不等式(组),并把它的解集在数轴上表示出来.
(1)$\frac{5(x-1)}{2}$+$\frac{4}{3}$>$\frac{x+1}{2}$.
(2)$\left\{\begin{array}{l}{5x-2>3(x+1),①}\\{\frac{x}{2}-1≤7-\frac{3}{2}x,②}\end{array}\right.$(求其整数解)
(3)$\left\{\begin{array}{l}{6x+4≥3x+2,①}\\{\frac{2x+1}{3}>1+\frac{1-x}{2},②}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,AB是圆的直径,OC是圆的半径,扇形乙与扇形丙的面积比为2:1
(1)求扇形乙与扇形丙的圆心角的度数;
(2)若该圆的半径为6cm,其扇形乙中弧AC的长度.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,四边形ABCD是⊙O的内接正方形,延长AB至点P,使BP=AB,连接PC.
(1)求证:直线PC与⊙O的相切;
(2)连接PO,若正方形边长为2,求PO的长.

查看答案和解析>>

科目: 来源: 题型:解答题

19.问题情境:如图①所示,已知△ABC,请你自选条件作一个△DEF,使△DEF≌△ABC(要求:①写出自选条件;②写出作法,并保留作图痕迹).
小章展示了他的解法:
解:自选选条件为:DE=AB.DF=AC.
作法:如图②所示,①作射线EQ,在射线EQ上截取EF=BC;②以E为圆心.AB的长为半径画弧;③以F为圆心.AC的长为半为半径画弧,两弧交于点D;④连接DE.DF,△DEF即为所求.
反思交流:
(1)上述作法的根据是三角形全等的哪个条件?
(2)请你写出与小章的不同方法(要求:①写出自选条件;②写出作法,并保留作图痕迹).

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图1,矩形ABCD,AD>AB>$\frac{1}{2}$AC,P和Q两点分别从点A出发,点P沿着A-C-D的折线段以每秒2各单位长度运动,同时点Q沿着AD线段以每秒1各单位长度运动,AP的中垂线交AD于点M,设QM的长为y,运动时间为x,y与x的关系如图2所示:.
(1)AB=3,AD=4;
(2)求y与x的函数关系式,并写出x的取值范围;
(3)求x为何值时,DQ=DP?

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=$\frac{1}{2}$BD;③BN+DQ=NQ;④$\frac{AB+BN}{BM}$为定值.其中一定成立的是①②③④.

查看答案和解析>>

同步练习册答案