相关习题
 0  282263  282271  282277  282281  282287  282289  282293  282299  282301  282307  282313  282317  282319  282323  282329  282331  282337  282341  282343  282347  282349  282353  282355  282357  282358  282359  282361  282362  282363  282365  282367  282371  282373  282377  282379  282383  282389  282391  282397  282401  282403  282407  282413  282419  282421  282427  282431  282433  282439  282443  282449  282457  366461 

科目: 来源: 题型:解答题

16.如图,⊙O的直径AB=6,BC切⊙O于B,OC∥AD,BC=4,求弦AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知:点F在线段AB上,BF为⊙0的直径,点D在⊙O上,BC⊥AD于点C,BD平分∠ABC.
(1)求证:AC是⊙0的切线;
(2)若AD=4,AF=2,求CD的长.

查看答案和解析>>

科目: 来源: 题型:选择题

14.下列能判定四边形是平行四边形的有(  )
A.一组对边相等,一组对角也相等
B.一组对边相等,一条对角线被另一条平分
C.一组对角相等,一条对角线被另一条平分
D.一组对角相等,过这组对角的顶点的对角线平分另一条对角线

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,AB是⊙O的直径,弦CD⊥AB于E,分别以AE、BE为直径作两个大小不同的⊙O1和⊙O2,若CD=16,则图中阴影部分的面积为32π(结果保留π).

查看答案和解析>>

科目: 来源: 题型:解答题

12.先阅读下列材料:
化简$\frac{1}{\sqrt{2}+\sqrt{3}}$时,甲、乙两同学的解法分别为:
甲:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{3-2}{\sqrt{2}+\sqrt{3}}$=$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{\sqrt{2}+\sqrt{3}}$=$\sqrt{3}$-$\sqrt{2}$;
乙:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{1•(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}$=$\frac{\sqrt{2}-\sqrt{3}}{-1}$=$\sqrt{3}$-$\sqrt{2}$;
下面请解答:
(1)两位同学的解法是否正确?
(2)请用上述两种方法化简:$\frac{2}{\sqrt{5}-\sqrt{3}}$;
(3)计算$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+$\frac{1}{\sqrt{4}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知在△ABC中,∠ACB=90°,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处(AE为折痕,点E在CD上),在AD上截取DG,使以DG=CF.
(1)求证:△ABF∽△FCE;
(2)求证:BD⊥GE.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在⊙O中,圆心角∠AOB=120°,⊙O′与OA、OB相切于点C、D,与$\widehat{AB}$相切于F,求$\widehat{AB}$的长与⊙O′的周长的比.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).
(1)分别求图①②③中草坪的面积;
(2)如果多边形的边数为n,其余条件都不变,那么,你认为草坪的面积为多少?

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,若∠1+∠2=180°,则l1∥l2,试说明理由(填空).
理由:
∵∠2+∠3=180°(平角的定义),
∠1+∠2=180°(已知),
∴∠1=∠3(同角的补角相等)
∴l1∥l2(同位角相等,两直线平行)

查看答案和解析>>

同步练习册答案