相关习题
 0  282545  282553  282559  282563  282569  282571  282575  282581  282583  282589  282595  282599  282601  282605  282611  282613  282619  282623  282625  282629  282631  282635  282637  282639  282640  282641  282643  282644  282645  282647  282649  282653  282655  282659  282661  282665  282671  282673  282679  282683  282685  282689  282695  282701  282703  282709  282713  282715  282721  282725  282731  282739  366461 

科目: 来源: 题型:解答题

3.解方程组:
(1)$\left\{\begin{array}{l}{2x-y=0}\\{3x-2y=5}\end{array}\right.$;                   
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=10}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若关于x、y的二元一次方程组$\left\{\begin{array}{l}{3x+my=16}\\{2x+ny=15}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=7}\\{y=3}\end{array}\right.$,则关于x、y的二元一次方程组$\left\{\begin{array}{l}{3(x+y)-m(x-y)=16}\\{2(x+y)+n(x-y)=15}\end{array}\right.$ 的解是$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图1所示,已知函数y=$\frac{6}{x}$(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2$\sqrt{3}$,求此时P点的坐标;
(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.解方程:(1)$\frac{2x}{x-2}$-$\frac{2}{2-x}$=1;      (2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$-1=0.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知关于x的分式方程$\frac{a+2}{x+1}$=1有增根,则a的值为-2.

查看答案和解析>>

科目: 来源: 题型:填空题

18.$\frac{-21{x}^{3}{y}^{2}}{27{x}^{3}{y}^{3}{z}^{4}}$=$-\frac{7}{9y{z}^{4}}$(化成最简分式);$\sqrt{27{a}^{3}}$=3a$\sqrt{3a}$(化成最简二次根式).

查看答案和解析>>

科目: 来源: 题型:解答题

17.解下列一元一次不等式(组),并把解集在数轴上表示出来.
(1)$\frac{x-3}{4}<6-\frac{3-4x}{2}$;               (2)$\left\{\begin{array}{l}{\frac{x+1}{2}<\frac{2x-1}{5}}\\{2(x+4)≥3x+3}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.解方程组:
(1)$\left\{\begin{array}{l}{x-5y=0}\\{3x+2y=17}\end{array}\right.$              (2)$\left\{\begin{array}{l}{9x+2y=15}\\{3x+4y=10}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3(y-2x)+4y=2x-1}\\{2x+5y=7}\end{array}\right.$       (4)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)解方程:${x}^{2}-2\sqrt{5}x+1=0$       
(2)计算:($\sqrt{2}$+1)($\sqrt{2}$-1)-($\sqrt{3}$-2)2

查看答案和解析>>

科目: 来源: 题型:选择题

14.下列各式中最简二次根式为(  )
A.$\sqrt{3}$B.$\sqrt{{x}^{2}}$C.$\sqrt{0.7}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

同步练习册答案