相关习题
 0  282605  282613  282619  282623  282629  282631  282635  282641  282643  282649  282655  282659  282661  282665  282671  282673  282679  282683  282685  282689  282691  282695  282697  282699  282700  282701  282703  282704  282705  282707  282709  282713  282715  282719  282721  282725  282731  282733  282739  282743  282745  282749  282755  282761  282763  282769  282773  282775  282781  282785  282791  282799  366461 

科目: 来源: 题型:填空题

18.如图,AB是⊙O的直径,AB=2,点C是半圆弧AB上的一点,且∠CAB=40°,点D是BC的中点,点P是直径AB上的动点,则线段PC+PD的最小值是$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.有一个长为a、宽为1的矩形,若将该矩形对折1次,所得矩形与原矩形相似,则可求得a=$\sqrt{2}$;若将矩形沿同一方向对折2次,所得矩形与原矩形相似,则可求得a=2…若将该矩形沿同一方向对折n次,所得矩形与原矩形相似,则a=$\sqrt{{2}^{n}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.阅读下面材料:
如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I、F在OC上,点H、E在半圆上,求证:IG=FD.小云发现连接已知点得到两条线段,使可证明IG=FD.
请回答:小云所作的两条线段分别是OH和DF,证明IG=FD的依据是等量代换.

查看答案和解析>>

科目: 来源: 题型:填空题

15.若等腰三角形三边长均为整数,周长是11,则满足条件的三角形有3个.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,已知?ABCD,AB=$\frac{1}{2}$BC,延长AB至F,使BF=AB,再延长BA至E,使AE=AB,试判断EC与FD的位置关系,并说明其结论正确的理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,矩形ABCD中,点E、F分别是AB、CD边上的点,且AE=CF,点G、H分别为DE和BF的中点,求证:AG=CH.

查看答案和解析>>

科目: 来源: 题型:解答题

12.阅读理解:对于任意正实数a、b,∵($\sqrt{a}-\sqrt{b}$)2≥0,∴a-2$\sqrt{ab}+b≥0$,∴a+b≥2$\sqrt{ab}$,当且仅当a=b时,等号成立.
结论:在a+b$≥2\sqrt{ab}$(a、b均为正实数)中,若ab为定值P,则a+b$≥2\sqrt{P}$,
当且仅当a=b时,a+b有最小值2$\sqrt{P}$.
根据上述内容,回答下列问题:
(1)若x>0,只有当x=$\frac{3}{2}$时,4x+$\frac{9}{x}$有最小值为12.
(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线y=$\frac{6}{x}$(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
(3)已知x>0,则自变量x为何值时,函数y=$\frac{x}{{x}^{2}-4x+16}$取到最大值,最大值为多少?

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图,在平行四边形ABCD中,点E、F分别为AB、BC中点,则三角形BEF与多边形EFCDA的面积之比为1:7.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,矩形OABC的顶点A、C的坐标分别为(0,10)、(4,0),反比例函数y=$\frac{k}{x}(k≠0)$在第一象限内的图象过矩形OABC的对角线的交点M,并与AB、BC分别交于点E、F,连接OE、EF、OF,则△OEF的面积为$\frac{75}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知等腰△ABC的底边BC=8,腰长AB=5,现将△ABC按如图所示的方式放在平面直角坐标系中,其中点B与原点重合,点C在x轴上,此时,点A正好落在双曲线l1上.
(1)求双曲线l1的函数解析式.
(2)若将△ABC向下平侈,当点A落在x轴上时,点C正好落在双曲线l2上,求双曲线l2的函数解析式.

查看答案和解析>>

同步练习册答案