相关习题
 0  282648  282656  282662  282666  282672  282674  282678  282684  282686  282692  282698  282702  282704  282708  282714  282716  282722  282726  282728  282732  282734  282738  282740  282742  282743  282744  282746  282747  282748  282750  282752  282756  282758  282762  282764  282768  282774  282776  282782  282786  282788  282792  282798  282804  282806  282812  282816  282818  282824  282828  282834  282842  366461 

科目: 来源: 题型:解答题

3.若不论x取何实数,分式$\frac{2x-3}{{x}^{2}+4x+m}$总有意义,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,菱形ABCD的边长为4cm,且∠ABC=120°,E是BC的中点,在BD上求点P,使PC+PE取最小值,并求这个最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系中,点A(0,3),B(5,0),连接AB.
(1)将绕点O按逆时针方向旋转,得到△OCD,(点A落到点C处),求经过B、C、D三点的抛物线的解析式.
(2)现将(1)中抛物线向右平移两个单位,点C的对应点为E,点B的对应点为N,平移后的抛物线与原抛物线相交于点F;P、Q为平移后抛物线对称轴上的两个动点,(点Q在点P的上方),且PQ=1,要使四边形PQFE的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

20.直线y=2x+1与直线y=-3x+6交于点(a,b),则$\left\{\begin{array}{l}{x=a}\\{y=b}\end{array}\right.$是方程组(  )的解.
A.$\left\{\begin{array}{l}{y=2x+1}\\{y=-3x}\end{array}\right.$B.$\left\{\begin{array}{l}{y=2x+1}\\{y=-3x+6}\end{array}\right.$C.$\left\{\begin{array}{l}{y=2x+1}\\{y=3x+6}\end{array}\right.$D.$\left\{\begin{array}{l}{y=2x-1}\\{y=-3x+6}\end{array}\right.$

查看答案和解析>>

科目: 来源: 题型:解答题

19.先化简:$\frac{{x}^{2}-x}{x+1}$÷$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$•$\frac{x+2}{{x}^{2}+x}$,然后选择一个你喜欢的数代入求值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.计算.
(1)($\frac{b}{2{a}^{2}}$)3÷($\frac{2{b}^{2}}{3a}$)0×(-$\frac{b}{a}$)-2
(2)$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$÷$\frac{2x-1}{x+1}$•$\frac{{x}^{2}+x}{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在四边形ABCD中,AB=CD,∠ADC与∠BAD的平分线分别交BC于点E、F,且AF⊥DE,垂足为G
(1)求证:四边形ABCD是平行四边形;
(2)若AB=4,AD=6,求CF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知关于x的方程x2-3x+2-m2=0
(1)当m=0时,解这个方程;
(2)若x=4是这个方程的一个根,求m的值及这个方程的另一个根;
(3)无论m取何值,这个方程是否总有两个不相等的实数根?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.己知函数y=(m+2)${x}^{{m}^{2}+m-4}$是关于x的二次函数.求:
(1)满足条件的m的值;
(2)m为何值时,抛物线有最低点?求出这个最低点,这时,抛物线的开口方向、增减性如何?

查看答案和解析>>

科目: 来源: 题型:解答题

14.计算:
(1)6xy$•\frac{{y}^{2}}{15{x}^{2}}$;
(2)$\frac{-4xy}{9x{y}^{3}}÷\frac{1}{3{x}^{2}}$;
(3)$\frac{1}{x}÷\frac{1}{x-{x}^{2}}$;
(4)(a2-ab)$÷\frac{b-a}{ab}$;
(5)$\frac{{x}^{2}-4{y}^{2}}{{x}^{2}+4x+4}$•$\frac{x+2}{3{x}^{2}+6xy}$.

查看答案和解析>>

同步练习册答案