相关习题
 0  282664  282672  282678  282682  282688  282690  282694  282700  282702  282708  282714  282718  282720  282724  282730  282732  282738  282742  282744  282748  282750  282754  282756  282758  282759  282760  282762  282763  282764  282766  282768  282772  282774  282778  282780  282784  282790  282792  282798  282802  282804  282808  282814  282820  282822  282828  282832  282834  282840  282844  282850  282858  366461 

科目: 来源: 题型:解答题

5.学校有一块平行四边形的草地,现想把草地分成面积相等的两块,中间留一条小路,
(1)想一想会有多少种分法,请你在图①②③中的平行四边形中画出满足条件的示意图.
(2)在上述问题中,明明看到草地中间的点P处有一块标志石,如图④,他建议经过标志石修小路,一样可以把草地分成面积相等的两部分.试一试,可以怎样分?并说明你的做法的正确性.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,点P(a,b)在第一象限内,PC⊥y轴于点C,PD⊥x轴于点D,两条垂线交反比例函数y=$\frac{k}{x}$的图象于点A、B.
(1)分别写出A、B两点的坐标(用a,b,k表示);
(2)求证:$\frac{PA}{PC}$=$\frac{PB}{PD}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.利用换元法解下列方程
(1)(x2-2x)2+(x2-2x)-2=0;
(2)(2-3x)+(3x-2)2=0.

查看答案和解析>>

科目: 来源: 题型:解答题

2.判断下列事件哪些是随机事件,哪些是必然事件,哪些是不可能事件,哪些是确定性事件.
有一个正六面体,六个面上分别写有1~6这六个整数,投掷这个正六面体一次.
(1)向上一面的点数是3的倍数;
(2)向上一面的点数是5;
(3)向上一面的点数是分数;
(4)向上一面的点数大于4;
(5)向上一面的点数小于或等于6.

查看答案和解析>>

科目: 来源: 题型:解答题

1.点B,C,E在同一直线上,点A,D在直线CE同侧,AB=AC,EC=ED,∠BAC=∠CED=70°,直线AE,BD交于点F.
(1)如图(1),求证:△BCD∽△ACE,并求∠AFB的度数;
(2)如图(1)中的△ABC绕点C旋转一定角度,得图(2),求∠AFB的度数;
(3)拓展:如图(3),矩形ABCD和矩形DEFG中,AB=1,AD=ED=$\sqrt{3}$,DG=3,直线AG,BF交于点H,请直接写出∠AHB的度数.

查看答案和解析>>

科目: 来源: 题型:填空题

20.如图,直线EF与?ABCD的对角线AC平行,分别交DA,CB的延长线于点E,F,直线GH与AC平行,分别交CD,BA的延长线于点G,H,则EF与HG的关系是EF=HG,EF∥HG.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,△DEF的顶点分别是△ABC各边的中点,△GHI的顶点分别是△DEF各边的中点,…,依次做下去,记△ABC得周长为P1,△DEF的周长为P2,△GHI的周长为P3,…,已知P1=1,则Pn等于(  )
A.$\frac{1}{{2}^{n-1}}$B.$\frac{1}{{2}^{n}}$C.$\frac{1}{{2}^{n+1}}$D.$\frac{1}{{2}^{n+2}}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在Rt△ABC中,∠ACB=90°,点D在边AB上,线段DC绕点D按逆时针旋转,端点C恰巧落在边AC上的点E处,已知$\frac{AD}{DB}$=4,求$\frac{AE}{EC}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.请阅读下面的材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图,△ABC中,AD是角平分线,求证:$\frac{BD}{DC}=\frac{AB}{AC}$
分析:要证$\frac{BD}{DC}=\frac{AB}{AC}$,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.
在比例式$\frac{BD}{DC}=\frac{AB}{AC}$中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明$\frac{BD}{DC}=\frac{AB}{AC}$就可以转化为证AE=AC.
(1)证明:过C作CE∥DA,交BA的延长线于E.(完成以下证明过程)
∴AE=AC等角对等边
∴△BAD∽△BEC,∴$\frac{BD}{BC}=\frac{AB}{BE}$相似三角形对应边成比例
∴$\frac{BD}{DC}=\frac{AB}{AC}$
(2)用三角形内角平分线性质定理解答问题:
已知:如图,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.求:BD的长. 

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,四边形ABCD,某图形设计要求把该四边形改设计成一个平行四边形且面积扩大为原来的2倍,A、B、C、D这四点必须在新的平行四边形的四条边上.你能给出一种符合要求的设计方案吗?

查看答案和解析>>

同步练习册答案