相关习题
 0  282688  282696  282702  282706  282712  282714  282718  282724  282726  282732  282738  282742  282744  282748  282754  282756  282762  282766  282768  282772  282774  282778  282780  282782  282783  282784  282786  282787  282788  282790  282792  282796  282798  282802  282804  282808  282814  282816  282822  282826  282828  282832  282838  282844  282846  282852  282856  282858  282864  282868  282874  282882  366461 

科目: 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点A(-3,2)和点B(1,m),连接BO并延长与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点C.
(1)求一次函数y=k1x+b和反比例函数y=$\frac{{k}_{2}}{x}$的表达式;
(2)是否在双曲线y=$\frac{{k}_{2}}{x}$上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是(  )
A.AF=$\frac{1}{2}BC$B.四边形ACDE是矩形
C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形

查看答案和解析>>

科目: 来源: 题型:解答题

3.是否存在整数m,使关于x的方程5x-2m=3x-6m+2的解满足-3≤x<2?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=$\sqrt{13}$;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是$\sqrt{15}$+$\sqrt{3}$,$\sqrt{39}$+$\sqrt{3}$,2$\sqrt{15}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.解方程2(x-1)=x.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知方程2x+m=1的解是x=1,则m的值为-1.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果$\frac{AD}{BC}=\frac{1}{4}$,那么$\frac{AF}{BF}$的值是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

18.己知关于x的方程$\frac{3a}{a+x}=\frac{7}{2}$的解是-1,则a=7.

查看答案和解析>>

科目: 来源: 题型:解答题

17.解下列方程
(1)-4x+1=-2($\frac{1}{2}$-x)
(2)2-$\frac{3x-7}{4}=-\frac{x+7}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.若方程$\frac{x+1}{2}-\frac{2x-1}{5}$=0与方程x+$\frac{6a-x}{2}=\frac{a}{3}$的解相同,则a=(  )
A.$\frac{21}{16}$B.$\frac{63}{16}$C.-$\frac{21}{16}$D.-$\frac{63}{16}$

查看答案和解析>>

同步练习册答案