相关习题
 0  282690  282698  282704  282708  282714  282716  282720  282726  282728  282734  282740  282744  282746  282750  282756  282758  282764  282768  282770  282774  282776  282780  282782  282784  282785  282786  282788  282789  282790  282792  282794  282798  282800  282804  282806  282810  282816  282818  282824  282828  282830  282834  282840  282846  282848  282854  282858  282860  282866  282870  282876  282884  366461 

科目: 来源: 题型:解答题

5.如图,在梯形ABCD中,∠ABC=∠BAD=90°,在AD上取一点E,将△ABE沿直线BE折叠,使点A落在BD上的G处,EG的延长线交直线BC于点F.
(1)试探究AE、ED、DG之间有何数量关系?说明理由;
(2)判断△ABG与△BFE是否相似,并对结论给予证明;
(3)设AD=a,AB=b,BC=c.
①当四边形EFCD为平行四边形时,求a、b、c应满足的关系;
②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,二次函数y=-$\frac{1}{k}$x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.
(1)当k=3,m=2时,S△ABE=$\frac{9}{2}$,
当k=4,m=3时,S△ABE=8,
当k=5,m=4时,S△ABE=$\frac{25}{2}$;
(2)根据(1)中的结果,猜想S△ABE的大小,并证明你的猜想;
(3)当S△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的四边形为平行四边形时,请直接写出m与n满足的关系式.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是(  )
A.-1≤x≤1B.-$\sqrt{2}$≤x≤$\sqrt{2}$C.0≤x≤$\sqrt{2}$D.x>$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.计算:
(1)$\sqrt{75}$-($\sqrt{1\frac{1}{3}}$-$\sqrt{48}$)
(2)$\sqrt{27{a}^{3}}$(a2$\sqrt{\frac{3}{a}}$-$\frac{a}{4}$$\sqrt{\frac{a}{3}}$)

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图1,在等腰直角△ABC和等腰直角△CDE中,∠ABC,∠CDE是直角,连接BD,点F在AE上且∠FBD=45°,AB=2,CD=1.
(1)求证:AF=FE;
(2)若将等腰直角CDE绕点C旋转一个a(0°<a≤90°)角,其它条件不变,如图2,求$\frac{AF}{FE}$的值;
(3)在(2)的条件下,再将等腰直角△CDE沿直线BC右移k个单位,其它条件不变,如图3,试求$\frac{AF}{FE}$的值(用含k的代数式表示)

查看答案和解析>>

科目: 来源: 题型:解答题

19.解方程组
$\left\{\begin{array}{l}{5{x}^{2}-4{y}^{2}=20}\\{\sqrt{15}x-6y=2\sqrt{15}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD,垂足为E,且AE平分∠BAO.若DO=2,求AB和BC的长度.

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列各式:$\frac{1}{8}(1-x)$,$\frac{4x}{π-3}$,$\frac{{{x^2}-{y^2}}}{2}$,$\frac{1}{x}+x$,$\frac{{5{x^2}}}{x}$,其中分式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:解答题

16.解不等式组:$\left\{\begin{array}{l}{3(x+2)≥4x+5}\\{\frac{x+1}{2}>\frac{x}{3}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案