相关习题
 0  282695  282703  282709  282713  282719  282721  282725  282731  282733  282739  282745  282749  282751  282755  282761  282763  282769  282773  282775  282779  282781  282785  282787  282789  282790  282791  282793  282794  282795  282797  282799  282803  282805  282809  282811  282815  282821  282823  282829  282833  282835  282839  282845  282851  282853  282859  282863  282865  282871  282875  282881  282889  366461 

科目: 来源: 题型:解答题

7.如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).
(1)当t为何值时,△APQ与△AOB相似?
(2)当t为何值时,△APQ的面积为8cm2

查看答案和解析>>

科目: 来源: 题型:解答题

6.在Rt△AOB中,∠AOB=90°,OA=OB=4厘米,点P从B出发,以1厘米/秒的速度沿射线BO运动,设点P运动时间为t(t>0)秒.△APC是以AP为斜边的等腰直角三角形,且C,O两点在直线AB的同侧,连接OC.
(1)当t=1时,求$\frac{AC}{AO}$的值;
(2)求证:△APB∽△ACO;
(3)设△POC的面积为S,求S与t的函数解析式.

查看答案和解析>>

科目: 来源: 题型:填空题

5.如图,△ABC中,AB=10,sin∠BAC=$\frac{3}{5}$,点D为边AC上一点,点E为CA延长线上一点,且$\frac{AD}{AE}$=$\frac{1}{2}$,以DB、DE为边作?BDEF,则当对角线DF的长取得最小值时,BD的长为8.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图1:平面直角坐标系中,A(a,0)、B(0,b)满足a2+b2+2ab+$\sqrt{a+2}$=0.
(1)求△AOB的面积;
(2)如图2,△OBD为等边三角形,作CB⊥y轴交AD延长线于C,作DE⊥CD交y轴于E.求证:BC=BE;
(3)如图3,C(c,2)为第二象限内一动点,且-2<c<0.AC的中垂线交x轴于E,连接DE交y轴于点F,求△BCF的周长.

查看答案和解析>>

科目: 来源: 题型:解答题

2.代数基本定理告诉我们对于形如xn+${a}_{1}{x}^{n-1}$$+{a}_{2}{x}^{n-2}$+…+an-1x+an=0(其中a1,a2,…an为整数)这样的方程,如果有整数根的话,那么整数根必定是an的约数.例如方程x3+8x2-11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2-11x+2含有因式x-1,所以原方程可转化为:(x-1)(x2+9x-2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2-11x-3=0.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在Rt△ABC中∠C=90°∠A=60°BC=6.等边△DEF从初始位置(点E与点B重合,EF落在BC上)在线段BC上沿BC方向以每秒1个单位的速度平移(如图1所示),DE、DF分别与AB相交于点M、N,当点F运动到点C时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.
(1)求△DEF的边长;
(2)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE一EF运动,最终运动到F点,若设△PMN的面积为y,求y与x的函数关系式,并写出相应的自变量的取值范围:
(3)当点F与点C重合时(如图2),点G为AC边上一动点,连接EG,将△EGC绕点E逆时针旋转60°得到△EHD,延长HD交AC于点K.若△HGK的面积等于$\frac{{\sqrt{3}}}{2}$,求CG的长.

查看答案和解析>>

科目: 来源: 题型:解答题

8.解方程组:$\left\{\begin{array}{l}{|x-1|+|y-2|=6}\\{|x-1|=2y-4}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,一次函数y1=k1x+b(k1>0)的图象经过点C(-3,0),且与两坐标轴围成的三角形的面积为3.
(1)求该一次函数的解析式;
(2)若反比例函数y2=$\frac{{k}_{2}}{x}$的图象与该一次函数的图象交于一、三象限内的A、B两点,且AC=2BC.求k2的值;
(3)在(2)的条件下,请写出当x在什么范围时,y1>y2

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,正比例函数y=mx与反比例函数y=$\frac{k}{x}$的图象相交于P、Q两点,PA⊥x轴于A,△PAO的面积是3.
(1)求反比例函数的解析式;
(2)如果0A=2,试求点Q的坐标.

查看答案和解析>>

同步练习册答案