相关习题
 0  282697  282705  282711  282715  282721  282723  282727  282733  282735  282741  282747  282751  282753  282757  282763  282765  282771  282775  282777  282781  282783  282787  282789  282791  282792  282793  282795  282796  282797  282799  282801  282805  282807  282811  282813  282817  282823  282825  282831  282835  282837  282841  282847  282853  282855  282861  282865  282867  282873  282877  282883  282891  366461 

科目: 来源: 题型:填空题

7.从某校的图书馆向正南方向走200m,再向正西走100m,就到达体育馆.若体育馆在此情况下的坐标位置为(30,40).则图书馆位置应为(130,240).

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,已知B、D、E、C四点在同一直线上,且AD=AE,∠1=∠2.求证:△ABC是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知:如图,BE和CF是△ABC的高,H是BE和CF的交点,且HB=HC,∠A=60°,求证:△ABC为等边三角形.

查看答案和解析>>

科目: 来源: 题型:解答题

4.“数形结合“是我们解决问题的一个重要方法,例如:在化简(a+b)(c+d)时,我们可以把它与矩形的面积联系起来,我们可以取一个边长为(a+b)、(c+d)的长方形,形如:

可得里面的四个小长方形面积为ac,ad,bc和bd:所以(a+b)(c+d)=ac+ad+bc+bd,那么请你利用“数形结合”思想说明平方差式:(a+b)(a-b)=a2-b2

查看答案和解析>>

科目: 来源: 题型:选择题

3.点O是矩形ABCD内任意一点,点O到点A、B、C的距离分别为a、b、c,那么点O到点D的距离为(  )
A.$\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}$B.$\sqrt{{a}^{2}-{b}^{2}-{c}^{2}}$C.$\sqrt{{a}^{2}-{b}^{2}+{c}^{2}}$D.$\sqrt{-{c}^{2}+{b}^{2}+{a}^{2}}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在平行四边形ABCD中,AB⊥AC,点E是AC上一点,且AE=AB,连接BE交BC边上的高AF于点H,延长对角线CA至点G.使AG=CE,连接GH.求证:∠CAD=∠G.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.

(1)发现与证明:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:相等
当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:相等
(2)引申与运用:当正方形AEFG旋转任意一个角度时(如图3),△ABE与△ADG的面积关系是相等
并证明.
运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是18cm2

查看答案和解析>>

科目: 来源: 题型:解答题

20.证明:点(2m,n2)不在第三、四象限.

查看答案和解析>>

科目: 来源: 题型:解答题

19.利用“等边对等角”
如图,AB=AD,CD∥AB,CE∥AD.
求证:△CDE是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在矩形ABCD中,已知AC、BD相交于O,EF⊥AC于O,且交AB于F,交CD于E,EF=AF.
(1)求∠OFA的度数;
(2)求证:OF=FB.

查看答案和解析>>

同步练习册答案