相关习题
 0  282799  282807  282813  282817  282823  282825  282829  282835  282837  282843  282849  282853  282855  282859  282865  282867  282873  282877  282879  282883  282885  282889  282891  282893  282894  282895  282897  282898  282899  282901  282903  282907  282909  282913  282915  282919  282925  282927  282933  282937  282939  282943  282949  282955  282957  282963  282967  282969  282975  282979  282985  282993  366461 

科目: 来源: 题型:解答题

13.设二次函数y=ax2+bx+c的图象经过点(0,2),(1,-1),且其图象在x轴上所截得的线段的长度为2$\sqrt{2}$,求这个二次函数的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

12.根据下列条件,分别求出对应的二次函数解析式.
(1)已知抛物线的顶点是(1,2),且过点(2,3)
(2)已知二次函数的图象过点(-1,2),(0,1),(2,-7).

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知一次函数y=kx+b的图象经过点(1,4)和(2,2).
(1)求这个一次函数;
(2)画出这个函数的图象,并求出它与x轴的交点A、与y轴的交点B;
(3)求出△AOB的面积;
(4)直线AB上是否存在一点C(C与B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系中,顶点为(3,4)的抛物线交y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5),求此抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

9.直线y=k1x+b与直线y=k2x的图象交于点(-2,4),且在y轴上的截距是2,求:
(1)这两个函数关系式;
(2)这两条直线与x轴所围成的三角形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知抛物线y=a(x-3)2经过点A(2,$\frac{1}{2}$).
(1)写出抛物线的表达式,并指出抛物线的对称轴;
(2)求出与点A(2,$\frac{1}{2}$)关于该抛物线的对称轴对称的点A′的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

7.试试看,如何将二次函数y=$\frac{1}{2}$x2-2x+3化成y=$\frac{1}{2}$(x-2)2+1?

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在正方形ABCD中,E是CD边上一点(与C、D不重合),DF⊥AE,垂足为G,交BC于F.
(1)求证:AE=DF;
(2)连接AF,若E是CD的中点,且CD=4$\sqrt{5}$,求△AFG的面积.
(3)连接BG,若E是CD的中点.且BG=4,求正方形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若点E是AC的中点,判断BE与AC的位置关系,并说明理由;
(3)若△ABE是等边三角形,AD=$\sqrt{14}$,求对角线AC的长.

查看答案和解析>>

科目: 来源: 题型:选择题

4.二次函数y=ax2+bx+c的图形如图所示,则一次函数y=ax-c与反比例函数y=$\frac{a+b+c}{x}$在同一坐标系内的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案