相关习题
 0  282900  282908  282914  282918  282924  282926  282930  282936  282938  282944  282950  282954  282956  282960  282966  282968  282974  282978  282980  282984  282986  282990  282992  282994  282995  282996  282998  282999  283000  283002  283004  283008  283010  283014  283016  283020  283026  283028  283034  283038  283040  283044  283050  283056  283058  283064  283068  283070  283076  283080  283086  283094  366461 

科目: 来源: 题型:解答题

7.如图①,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.(提示:如图②所示分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为E、F,延长EB、FC相交于G点)
(1)求证:四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,△ABD是等腰三角形,AB=AD,将△ABD沿BD翻折得△CBD,点P是线段BD上一点,
(1)如图1,连接PA、PC,求证:CP=AP;
(2)如图2,连接PA,若∠BAP=90°时,作∠DPF=45°,线段PF交线段CD于F,求证:AD=AP+DF;
(3)如图3,∠ABD=30°,连接AP并延长交CD于M,若∠BAM=90°,在BD上取一点Q,且DQ=3BQ,连BM、CQ,当BM=$\frac{15}{2}$时,求CQ的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图1,在平面直角坐标系中有一个Rt△OAC,其中∠ACO=90°,∠CAO=30°,OC=3,将该三角形沿直线AC翻折得到△BAC.
(1)点A的坐标为(3,3$\sqrt{3}$),点B的坐标为(6,0),OA边所在直线的解析式为y=$\sqrt{3}$x;
(2)在图1中,一动点P从点O出发,沿折线O→A→B的方向以每秒2个单位的速度向B运动,设运动时间为t(秒).请求出当t为何值时,△ACP的面积为△AOB面积的$\frac{1}{3}$;
(3)如图2,固定△OAC,将△BAC绕点C逆时针旋转,旋转后得到△A′CB′,设A′C所在直线与OA所在直线的交点为E,请问在旋转过程中是否存在点E,使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在直角三角形ABC中,∠ABC=90°,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(0<t≤5)秒.
(1)当点Q从B点向A点运动时(未到达点A)求S△APQ与t的函数关系式;写出t的取值范围;
(2)在(1)的条件下,四边形BQPC的面积能否为△ABC面积的$\frac{13}{15}$?若能,求出相应的t值;若不能,说明理由;
(3)伴随点P、Q的运动,设线段PQ的垂直平分线为l,当l经过点B时,求t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=2,AD=1,F为BE的中点.
(1)如图1,当边AD与边AB重合时,连接DF,求证:DF⊥CF;
(2)若∠BAE=135°,如图2,求CF2的值;
(3)将△ADE绕点A旋转一周,直接写出点F运动路径的长.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠A=90°,M、N分别是EB、CD的中点.

(1)求证:BE=CD,△AMN是等腰直角三角形;
(2)若把△ADE绕A点旋转到图2的位置,试探究BE与CD的数量关系和位置关系,并给予证明;
(3)当△ADE绕A点旋转到图3的位置时,请判断△AMN的形状,直接写出结论,不必证明.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系中如图,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其右侧作等边三角形APQ,当点P运动到原点O处时,记Q的位置为B,已知在直角三角形中两直角边的平方和等于斜边的平方,即直角三角形两直角边长为a,b,斜边长为c,则a2+b2=c2
(1)求点B的坐标;
(2)在坐标轴是否存在一点G,△GOB为等腰三角形,若存在,请直接写出G点坐标,若不存在,请说明理由.
(3)当点P在x轴上运动(P不与O重合)时,∠ABQ的值会发生怎样的变化,证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上-点.
(1)求证:△ACD≌△BCE;
(2)判断BD与BE的位置关系,并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

18.解方程:$\frac{2x}{x+2}$=2-$\frac{1}{x+1}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.不等式组$\left\{\begin{array}{l}{x+3>2x-1}\\{3x-2≤2(x-1)}\end{array}\right.$的解集是x≤0.

查看答案和解析>>

同步练习册答案