相关习题
 0  282926  282934  282940  282944  282950  282952  282956  282962  282964  282970  282976  282980  282982  282986  282992  282994  283000  283004  283006  283010  283012  283016  283018  283020  283021  283022  283024  283025  283026  283028  283030  283034  283036  283040  283042  283046  283052  283054  283060  283064  283066  283070  283076  283082  283084  283090  283094  283096  283102  283106  283112  283120  366461 

科目: 来源: 题型:填空题

18.当x=-1时,$\frac{1+x}{{{x^2}-1}}$=无答案.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+1)(m-1)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.在△ABC中,∠C=90°,AC=$2\sqrt{5}$,∠A的角平分线交BC于D,且AD=$\frac{4}{3}\sqrt{15}$,则tanB的值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.探索与发现:
(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是a1⊥a3,请说明理由.
(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是a1∥a4(直接填结论,不需要说明理由)
(3)现在有2014条直线a1,a2,a3,…,a2014,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2014的位置关系.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m)

查看答案和解析>>

科目: 来源: 题型:选择题

13.如图,Rt△AOB中,OA⊥OB,⊙O与AB相切于点E,AO、BD的延长线交⊙O于C、D.若⊙O的半径为1,则四边形ABCD面积最小值为(  )
A.2+3$\sqrt{2}$B.$\frac{3+2\sqrt{2}}{2}$C.4+2$\sqrt{2}$D.3+3$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,△ABC的顶点都是正方形网格中的格点,则cosA等于(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\sqrt{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情况.情形一:如图2,沿等腰三角形△ABC顶角∠BAC的平分线AD折叠,点B与点C重合;情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是(填“是”或“不是”)
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,并说明理由.根据以上内容猜想:若经过n 次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为∠B=n∠C.
应用提升
(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是5°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目: 来源: 题型:解答题

10.探究:如图1,四边形ABCD是矩形,E是CD中点,G是BC上一点,BG=CE,连接EG并延长交AB的延长线于点H,过点E作EH的垂线交AD于点F,求证:△BGH≌△DEF.
应用:如图2,四边形ABCD是菱形,∠D=60°,E、F分别是CD、AD上一点,以点E为旋转中心,将射线EF逆时针旋转120°,交BC于点G,交AB的延长线于点H,M是CD上一点,∠DFM=60°,FD=2cm,FE=3cm,BH=6cm,求HG的长度.

查看答案和解析>>

科目: 来源: 题型:解答题

9.(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BE⊥l,AD⊥l,垂足分别为D、E.求证:△ADC≌△CEB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.
(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

查看答案和解析>>

同步练习册答案