相关习题
 0  282973  282981  282987  282991  282997  282999  283003  283009  283011  283017  283023  283027  283029  283033  283039  283041  283047  283051  283053  283057  283059  283063  283065  283067  283068  283069  283071  283072  283073  283075  283077  283081  283083  283087  283089  283093  283099  283101  283107  283111  283113  283117  283123  283129  283131  283137  283141  283143  283149  283153  283159  283167  366461 

科目: 来源: 题型:选择题

3.如果一次函数y=kx-b的图象经过第一、二、三象限,那么k的取值范围是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0

查看答案和解析>>

科目: 来源: 题型:填空题

2.一次函数y=kx+1中,变量y的值随x的值增大而增大,则k的取值范围为k>0.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A(0,n),B(m,0)中的m,n是方程组$\left\{\begin{array}{l}{m+n=-2}\\{m-n=-14}\end{array}\right.$的解,点C在x轴的正半轴上,且OA=2OC,AB=10,过点A作AD⊥y轴,过点C作CD⊥AD于点D,动点P从点D出发,以每秒2个单位长度的速度在射线DA上运动,同时另一动点Q从点B出发向终点A运动,速度是每秒3个单位长度,一点停止运动另一点也停止,设运动时间为t秒.
(1)求出点A、B、C的坐标;
(2)连接PC,请用含t的关系式来表示△PAC的面积S;
(3)是否存在某一时刻t,使△PAC的面积等于△BOQ面积的一半?若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

20.四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF的面积可表示为(  )
A.abB.$\frac{1}{2}$abC.$\frac{1}{2}$b2D.$\frac{1}{2}$a2

查看答案和解析>>

科目: 来源: 题型:解答题

19.一辆动车从重庆开往成都,一辆高铁从成都开往重庆,两车同时出发,设动车离重庆的距离为y1(cm),高铁离重庆的距离为y2(km),动车行驶时间为t(h),变量y1,y2与t之间的关系图象如图所示:
(1)根据图象,求高铁和动车的速度;
(2)动车出发多少小时与高铁相遇;
(3)设两车间的距离为s(km),求两车相遇至高铁到站时,变量s关于t的关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知:$\sqrt{2}$cos(x+15°)=1,则sinx的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.下列运算正确的是(  )
A.x2÷x2=1B.(-a2b)3=a6b3C.(-3x)0=-1D.(x+3)2=x2+9

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2$\sqrt{5}$.
以上结论中,你认为正确的有①③④.(填序号)

查看答案和解析>>

科目: 来源: 题型:解答题

15.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s和所用的时间t之间的关系如图所示,根据图象回答下列问题:
(1)写出这个情景中的变量是时间t和路程S;
(2)小灰灰的速度是每分钟100米;
(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图1,在平面直角坐标系中,抛物线y=$\frac{1}{2}{x}^{2}$-2x-6与x轴交于A.B两点(点A在点B左侧).与y轴交于点T,抛物线顶点为C.
(1)求四边形OTCB的面积;
(2)如图2,抛物线的对称轴与x轴交于点D.线段EF与PQ长度均为2,线段EF在线段DB上运动.线段PQ在y轴上运动,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N.请求出ME′+NF′的最大值,并求当ME′+NF′值最大时,四边形PNMQ周长的最小值;
(3)如图3,连接AT,将△AOT沿x轴向右平移得到△A′O′T′,当T′与直线BC的距离为$\frac{\sqrt{5}}{5}$时,求△A′O′T′与△BCD的重叠部分面积.

查看答案和解析>>

同步练习册答案