1.阅读下列材料,然后回答问题:
$\frac{1}{\sqrt{2}+1}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{1×(\sqrt{4}-\sqrt{3})}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$
…
(1)认真观察上述式子的推导过程,回答问题:
①填空:$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\sqrt{7}$-$\sqrt{6}$.
②求$\frac{1}{3\sqrt{2}+\sqrt{17}}$的值.
(2)根据你的发现,求出$\frac{2}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)的值.