相关习题
 0  283194  283202  283208  283212  283218  283220  283224  283230  283232  283238  283244  283248  283250  283254  283260  283262  283268  283272  283274  283278  283280  283284  283286  283288  283289  283290  283292  283293  283294  283296  283298  283302  283304  283308  283310  283314  283320  283322  283328  283332  283334  283338  283344  283350  283352  283358  283362  283364  283370  283374  283380  283388  366461 

科目: 来源: 题型:填空题

9.已知等式$\frac{\sqrt{{x}^{2}-4x+4}}{x+2}$+(x-2)2=0,则x的值是2或-$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知|a-b-$\sqrt{17}$|+$\sqrt{ab-2}$=0
(1)求(a-1)(b+1)的值.
(2)求a2+b2的值.
(3)求ab3-a3b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,已知△ABC内接于⊙O,点E在弧BC上,AE交BC于点D,EB2=ED•EA经过B、C两点的圆弧交AE于I.
(1)求证:△ABE∽△BDE;
(2)如果BI平分∠ABC,求证:$\frac{AB}{BD}$=$\frac{AE}{EI}$
(3)设O的半径为5,BC=8,∠BDE=45°,求AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知m、n满足算式(m-6)2+|n-2|=0.
(1)求m、n的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△AB′E′,点B、E的对应点分别为B′、E′.
(1)如图1,当α=30°时,求证:B′C=DE;
(2)连接B′E、DE′,当B′E=DE′时,请用图2求α的值;
(3)如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为2$\sqrt{2}$-2≤PQ≤4$\sqrt{2}$+2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.抛物线y=ax2+bx-3交x轴于B、C两点,且B的坐标为(-2,0)直线y=mx+n过点B和抛物线上另一点A(4,3)
(1)求抛物线和直线的解析式;
(2)若点P为抛物线上的一个动点,且在直线AB下方,过P作PQ∥x轴,且PQ=4(点Q在P点右侧).以PQ为一边作矩形PQEF,且点E在直线AB上.求矩形PQEF的最大值.并求出此时点P的坐标;
(3)如图2,在(2)的结论下,连接AP、BP,设QE交于x轴于点D,现即将矩形PQEF沿射线DB以每秒1个单位长度的速度平移,当点D到达点B时停止,记平移时间为t,平移后的矩形PQEF为P′Q′E′F′,且Q′E′分别交直线AB、x轴于N、D′,设矩形P′Q′E′F′与△ABP的重叠部分面积为s,当NA=$\frac{\sqrt{5}}{8}$ND′时,求s的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知$\sqrt{a-1}$+(ab-2)2=0,求$\frac{1}{ab}+\frac{1}{(a+1)(b+1)}+\frac{1}{(a+2)(b+2)}$+…+$\frac{1}{(a+2015)(b+2015)}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.在△ABC中,AC=2$\sqrt{5}$,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所成锐角的正切值为$\frac{1}{2}$,并且CD⊥AC,则BC的长为$\frac{5}{2}$或5.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,平面直角坐标系xOy中,一次函数y=-x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为1的⊙O与x轴正半轴相交于点C,与y轴正半轴相交于点D.
(1)如图1,点E是⊙O上的动点(与点C、D不重合),则∠DEC=45°或135°°.
(2)当b=$\sqrt{2}$时,直线AB与⊙O相切;当b满足b>$\sqrt{2}$时,直线AB与⊙O相离;
(3)如图2,点E是⊙O上的动点,过点E作⊙O的切线交直线AB于点P,连接PO,当b=4时,求PE长的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若a2+|b-1|=0,则3a-4b=-4.

查看答案和解析>>

同步练习册答案